
Protecting the Connectivity of a Graph under
Non-uniform Edge Failures

Felix Hommelsheim1, Zhenwei Liu1,2, Nicole Megow1, Guochuan Zhang2

1University of Bremen, Germany

2Zhejiang University, China

STACS 2025, Jena, Germany

March 05, 2025

Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18

Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18

Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18

Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18

Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18

Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18

Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18

Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18

Problem Definition

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R+.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

Different connectivity properties: p-edge-connectivity
▶ between multiple terminal-pairs (s1, t1), . . . , (sk , tk): (p, q)-SCP.

▶ over the entire graph: (p, q)-GCP.
▶ between given (s, t): (p, q)-stCP.

→ a slightly more general model
Preventing Small (s, t)-Cut [Grüttemeier, Komusiewicz, Morawietz and Sommer, WG21]

2/18

Problem Definition

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R+.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

Different connectivity properties: p-edge-connectivity
▶ between multiple terminal-pairs (s1, t1), . . . , (sk , tk): (p, q)-SCP.

▶ over the entire graph: (p, q)-GCP.
▶ between given (s, t): (p, q)-stCP.

→ a slightly more general model
Preventing Small (s, t)-Cut [Grüttemeier, Komusiewicz, Morawietz and Sommer, WG21]

2/18

Problem Definition

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R+.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

Different connectivity properties: p-edge-connectivity
▶ between multiple terminal-pairs (s1, t1), . . . , (sk , tk): (p, q)-SCP.
▶ over the entire graph: (p, q)-GCP.
▶ between given (s, t): (p, q)-stCP.

→ a slightly more general model
Preventing Small (s, t)-Cut [Grüttemeier, Komusiewicz, Morawietz and Sommer, WG21]

2/18

Problem Definition

Input:
▶ An undirected graph G = (V , E) with edge cost c : E → R+.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

Different connectivity properties: p-edge-connectivity
▶ between multiple terminal-pairs (s1, t1), . . . , (sk , tk): (p, q)-SCP.
▶ over the entire graph: (p, q)-GCP.
▶ between given (s, t): (p, q)-stCP. → a slightly more general model

Preventing Small (s, t)-Cut [Grüttemeier, Komusiewicz, Morawietz and Sommer, WG21]

2/18

Related network design problems

Consider q ≥ |E |, i.e., the attacker can remove all unprotected edges.

Survivable Network Design: Select a minimum-cost spanning subgraph from a
given graph, satisfying certain connectivity requirements.

▶ Minimum Steiner Tree (Forest) [(Bern and
Plassmann, IPL 1989)]. (1, q)-SCP is APX-hard.

▶ Minimum p-edge-connected Spanning
Subgraph [Czumaj et al., SODA 1999].
(p, q)-GCP is APX-hard.

▶ The NP-hardness of (1, q)-GCP is
unknown (equivalent to Minimum
Spanning Tree when q ≥ |E |).

s1 t1

s2

s3 t3 t2

2 3 6 4
7

8 3

4 5

1

2
3

2

5

3

7

4

2

3
2

8 3

113
1

3/18

Related network design problems

Consider q ≥ |E |, i.e., the attacker can remove all unprotected edges.

Survivable Network Design: Select a minimum-cost spanning subgraph from a
given graph, satisfying certain connectivity requirements.

▶ Minimum Steiner Tree (Forest) [(Bern and
Plassmann, IPL 1989)]. (1, q)-SCP is APX-hard.

▶ Minimum p-edge-connected Spanning
Subgraph [Czumaj et al., SODA 1999].
(p, q)-GCP is APX-hard.

▶ The NP-hardness of (1, q)-GCP is
unknown (equivalent to Minimum
Spanning Tree when q ≥ |E |).

s1 t1

s2

s3 t3 t2

2 3 6 4
7

8 3

4 5

1

2
3

2

5

3

7

4

2

3
2

8 3

113
1

3/18

Related network design problems

Consider q ≥ |E |, i.e., the attacker can remove all unprotected edges.

Survivable Network Design: Select a minimum-cost spanning subgraph from a
given graph, satisfying certain connectivity requirements.

▶ Minimum Steiner Tree (Forest) [(Bern and
Plassmann, IPL 1989)].

(1, q)-SCP is APX-hard.
▶ Minimum p-edge-connected Spanning

Subgraph [Czumaj et al., SODA 1999].
(p, q)-GCP is APX-hard.

▶ The NP-hardness of (1, q)-GCP is
unknown (equivalent to Minimum
Spanning Tree when q ≥ |E |).

s1 t1

s2

s3 t3 t2

2 3 6 4
7

8 3

4 5

1

2
3

2

5

3

7

4

2

3
2

8 3

113
1

3/18

Related network design problems

Consider q ≥ |E |, i.e., the attacker can remove all unprotected edges.

Survivable Network Design: Select a minimum-cost spanning subgraph from a
given graph, satisfying certain connectivity requirements.

▶ Minimum Steiner Tree (Forest) [(Bern and
Plassmann, IPL 1989)]. (1, q)-SCP is APX-hard.

▶ Minimum p-edge-connected Spanning
Subgraph [Czumaj et al., SODA 1999].
(p, q)-GCP is APX-hard.

▶ The NP-hardness of (1, q)-GCP is
unknown (equivalent to Minimum
Spanning Tree when q ≥ |E |).

s1 t1

s2

s3 t3 t2

2 3 6 4
7

8 3

4 5

1

2
3

2

5

3

7

4

2

3
2

8 3

113
1

3/18

Related network design problems

Consider q ≥ |E |, i.e., the attacker can remove all unprotected edges.

Survivable Network Design: Select a minimum-cost spanning subgraph from a
given graph, satisfying certain connectivity requirements.

▶ Minimum Steiner Tree (Forest) [(Bern and
Plassmann, IPL 1989)]. (1, q)-SCP is APX-hard.

▶ Minimum p-edge-connected Spanning
Subgraph [Czumaj et al., SODA 1999].

(p, q)-GCP is APX-hard.
▶ The NP-hardness of (1, q)-GCP is

unknown (equivalent to Minimum
Spanning Tree when q ≥ |E |).

s1 t1

s2

s3 t3 t2

2 3 6 4
7

8 3

4 5

1

2
3

2

5

3

7

4

2

3
2

8 3

113
1

3/18

Related network design problems

Consider q ≥ |E |, i.e., the attacker can remove all unprotected edges.

Survivable Network Design: Select a minimum-cost spanning subgraph from a
given graph, satisfying certain connectivity requirements.

▶ Minimum Steiner Tree (Forest) [(Bern and
Plassmann, IPL 1989)]. (1, q)-SCP is APX-hard.

▶ Minimum p-edge-connected Spanning
Subgraph [Czumaj et al., SODA 1999].
(p, q)-GCP is APX-hard.

▶ The NP-hardness of (1, q)-GCP is
unknown (equivalent to Minimum
Spanning Tree when q ≥ |E |).

s1 t1

s2

s3 t3 t2

2 3 6 4
7

8 3

4 5

1

2
3

2

5

3

7

4

2

3
2

8 3

113
1

3/18

Related network design problems

Consider q ≥ |E |, i.e., the attacker can remove all unprotected edges.

Survivable Network Design: Select a minimum-cost spanning subgraph from a
given graph, satisfying certain connectivity requirements.

▶ Minimum Steiner Tree (Forest) [(Bern and
Plassmann, IPL 1989)]. (1, q)-SCP is APX-hard.

▶ Minimum p-edge-connected Spanning
Subgraph [Czumaj et al., SODA 1999].
(p, q)-GCP is APX-hard.

▶ The NP-hardness of (1, q)-GCP is
unknown (equivalent to Minimum
Spanning Tree when q ≥ |E |).

s1 t1

s2

s3 t3 t2

2 3 6 4
7

8 3

4 5

1

2
3

2

5

3

7

4

2

3
2

8 3

113
1

3/18

Related network design problems
Flexible Network Design [Adjiashvili, Hommelsheim, Mühlenthaler, MP22]:
▶ Given an undirected graph G with edge .
▶ The edges are either safe or unsafe (non-uniform failure model).

▶ Select a minimum-cost spanning subgraph G ′(V , F).
▶ G ′ retains p-edge-connectivity after ≤ q failures of unsafe edges.
▶ Approximation for constant p or q [Bansal et al., ICALP23] [Chekuri et al., ICALP23].

s1

s2

t2

t1c(e)

(a) (1,q)-SCP

s1

s2

t2

t1c(e) 0

(b) (1,q)-FND

Figure: Reduction from (1, q)-SCP to (1, q)-Flexible Network Design.

4/18

Related network design problems
Flexible Network Design [Adjiashvili, Hommelsheim, Mühlenthaler, MP22]:
▶ Given an undirected graph G with edge .
▶ The edges are either safe or unsafe (non-uniform failure model).
▶ Select a minimum-cost spanning subgraph G ′(V , F).

▶ G ′ retains p-edge-connectivity after ≤ q failures of unsafe edges.
▶ Approximation for constant p or q [Bansal et al., ICALP23] [Chekuri et al., ICALP23].

s1

s2

t2

t1c(e)

(a) (1,q)-SCP

s1

s2

t2

t1c(e) 0

(b) (1,q)-FND

Figure: Reduction from (1, q)-SCP to (1, q)-Flexible Network Design.

4/18

Related network design problems
Flexible Network Design [Adjiashvili, Hommelsheim, Mühlenthaler, MP22]:
▶ Given an undirected graph G with edge .
▶ The edges are either safe or unsafe (non-uniform failure model).
▶ Select a minimum-cost spanning subgraph G ′(V , F).
▶ G ′ retains p-edge-connectivity after ≤ q failures of unsafe edges.

▶ Approximation for constant p or q [Bansal et al., ICALP23] [Chekuri et al., ICALP23].

s1

s2

t2

t1c(e)

(a) (1,q)-SCP

s1

s2

t2

t1c(e) 0

(b) (1,q)-FND

Figure: Reduction from (1, q)-SCP to (1, q)-Flexible Network Design.

4/18

Related network design problems
Flexible Network Design [Adjiashvili, Hommelsheim, Mühlenthaler, MP22]:
▶ Given an undirected graph G with edge .
▶ The edges are either safe or unsafe (non-uniform failure model).
▶ Select a minimum-cost spanning subgraph G ′(V , F).
▶ G ′ retains p-edge-connectivity after ≤ q failures of unsafe edges.
▶ Approximation for constant p or q [Bansal et al., ICALP23] [Chekuri et al., ICALP23].

s1

s2

t2

t1c(e)

(a) (1,q)-SCP

s1

s2

t2

t1c(e) 0

(b) (1,q)-FND

Figure: Reduction from (1, q)-SCP to (1, q)-Flexible Network Design.

4/18

Related network design problems
Flexible Network Design [Adjiashvili, Hommelsheim, Mühlenthaler, MP22]:
▶ Given an undirected graph G with edge .
▶ The edges are either safe or unsafe (non-uniform failure model).
▶ Select a minimum-cost spanning subgraph G ′(V , F).
▶ G ′ retains p-edge-connectivity after ≤ q failures of unsafe edges.
▶ Approximation for constant p or q [Bansal et al., ICALP23] [Chekuri et al., ICALP23].

s1

s2

t2

t1c(e)

(a) (1,q)-SCP

s1

s2

t2

t1c(e) 0

(b) (1,q)-FND

Figure: Reduction from (1, q)-SCP to (1, q)-Flexible Network Design.

4/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p, q.
▶ (p, 1)-SCP:
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

5/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.

▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p, q.
▶ (p, 1)-SCP:
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

5/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.

▶ This implies that there is no α-approximation, which also holds for
(p, q)-Flexible Network Design.

Exact algorithms for small values of p, q.
▶ (p, 1)-SCP:
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

5/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p, q.
▶ (p, 1)-SCP:
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

5/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p, q.
▶ (p, 1)-SCP:
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

5/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p, q.
▶ (p, 1)-SCP:
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.

▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

5/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p, q.
▶ (p, 1)-SCP:
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

5/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p or q.
▶ (p, 1)-SCP.
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

6/18

A toy example: (1, 1)-SCP

s1

s2

t2

t1

The attacker will only remove bridges.

The optimal solution is to protect all bridges that separates some (si , ti)!

7/18

A toy example: (1, 1)-SCP

s1

s2

t2

t1

The attacker will only remove bridges.

The optimal solution is to protect all bridges that separates some (si , ti)!

7/18

A toy example: (1, 1)-SCP

s1

s2

t2

t1

The attacker will only remove bridges.

The optimal solution is to protect all bridges that separates some (si , ti)!

7/18

A toy example: (1, 1)-SCP

s1

s2

t2

t1

The attacker will only remove bridges.

The optimal solution is to protect all bridges that separates some (si , ti)!

7/18

Generalization to (p, 1)-SCP

Algorithm for (p, 1)-SCP

▶ Consider critical cuts: p-edge-cuts which separates some (si , ti).
▶ Protect all edges in critical cuts.

Question: Implementation in polynomial time?

▶ Unsafe cuts: critical but have < p protected edges.
▶ Safe cuts: not critical or already have p protected edges.

si ti

unsafe

si ti

safe

si , ti

safe

Idea: Iteratively find an unsafe cut and protect the edges in the cut.

8/18

Generalization to (p, 1)-SCP

Algorithm for (p, 1)-SCP

▶ Consider critical cuts: p-edge-cuts which separates some (si , ti).
▶ Protect all edges in critical cuts.

Question: Implementation in polynomial time?

▶ Unsafe cuts: critical but have < p protected edges.
▶ Safe cuts: not critical or already have p protected edges.

si ti

unsafe

si ti

safe

si , ti

safe

Idea: Iteratively find an unsafe cut and protect the edges in the cut.

8/18

Generalization to (p, 1)-SCP

Algorithm for (p, 1)-SCP

▶ Consider critical cuts: p-edge-cuts which separates some (si , ti).
▶ Protect all edges in critical cuts.

Question: Implementation in polynomial time?

▶ Unsafe cuts: critical but have < p protected edges.
▶ Safe cuts: not critical or already have p protected edges.

si ti

unsafe

si ti

safe

si , ti

safe

Idea: Iteratively find an unsafe cut and protect the edges in the cut.

8/18

Generalization to (p, 1)-SCP

Algorithm for (p, 1)-SCP

▶ Consider critical cuts: p-edge-cuts which separates some (si , ti).
▶ Protect all edges in critical cuts.

Question: Implementation in polynomial time?

▶ Unsafe cuts: critical but have < p protected edges.
▶ Safe cuts: not critical or already have p protected edges.

si ti

unsafe

si ti

safe

si , ti

safe

Idea: Iteratively find an unsafe cut and protect the edges in the cut.

8/18

Generalization to (p, 1)-SCP

Algorithm for (p, 1)-SCP

▶ Consider critical cuts: p-edge-cuts which separates some (si , ti).
▶ Protect all edges in critical cuts.

Question: Implementation in polynomial time?

▶ Unsafe cuts: critical but have < p protected edges.
▶ Safe cuts: not critical or already have p protected edges.

si ti

unsafe

si ti

safe

si , ti

safe

Idea: Iteratively find an unsafe cut and protect the edges in the cut.

8/18

The capacity trick: distinguish safe and unsafe cuts

Idea:
▶ Properly define u : E → R≥0 s.t. u(safe cut) > u(unsafe cut).
▶ Compute minimum-capacity (si , ti) cuts to find unsafe cuts.

The capacity function:
▶ u(e) = 1 if e is unprotected.
▶ u(e) = 1 + 1

p if e is protected.

si ti

1 + 1
p

1

unsafe

si ti

1 + 1
p

safe

si , ti
1 + 1

p

1

safe

9/18

The capacity trick: distinguish safe and unsafe cuts

Idea:
▶ Properly define u : E → R≥0 s.t. u(safe cut) > u(unsafe cut).

▶ Compute minimum-capacity (si , ti) cuts to find unsafe cuts.

The capacity function:
▶ u(e) = 1 if e is unprotected.
▶ u(e) = 1 + 1

p if e is protected.

si ti

1 + 1
p

1

unsafe

si ti

1 + 1
p

safe

si , ti
1 + 1

p

1

safe

9/18

The capacity trick: distinguish safe and unsafe cuts

Idea:
▶ Properly define u : E → R≥0 s.t. u(safe cut) > u(unsafe cut).
▶ Compute minimum-capacity (si , ti) cuts to find unsafe cuts.

The capacity function:
▶ u(e) = 1 if e is unprotected.
▶ u(e) = 1 + 1

p if e is protected.

si ti

1 + 1
p

1

unsafe

si ti

1 + 1
p

safe

si , ti
1 + 1

p

1

safe

9/18

The capacity trick: distinguish safe and unsafe cuts

Idea:
▶ Properly define u : E → R≥0 s.t. u(safe cut) > u(unsafe cut).
▶ Compute minimum-capacity (si , ti) cuts to find unsafe cuts.

The capacity function:
▶ u(e) = 1 if e is unprotected.
▶ u(e) = 1 + 1

p if e is protected.

si ti

1 + 1
p

1

unsafe

si ti

1 + 1
p

safe

si , ti
1 + 1

p

1

safe

9/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p or q.
▶ (p, 1)-SCP.
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

10/18

A Divide and Conquer algorithm for (1, 2)-SCP

A decomposition lemma

There is a polynomial-time algorithm which decompose a 2EC graph G
into disjoint 2EC subgraphs G1, . . . , Gk s.t. G/

⋃k
i=1 Gi forms a cycle.

(a) Rectangles are terminals.

0 0

0

0

(b) Independent sub-instances

11/18

A Divide and Conquer algorithm for (1, 2)-SCP

A decomposition lemma

There is a polynomial-time algorithm which decompose a 2EC graph G
into disjoint 2EC subgraphs G1, . . . , Gk s.t. G/

⋃k
i=1 Gi forms a cycle.

(a) Rectangles are terminals.

0 0

0

0

(b) Independent sub-instances

11/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p or q.
▶ (p, 1)-SCP.
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

12/18

Augmentation-based approximation algorithms

Critical cuts: S := {S ⊂ V | |δ(S)| ≤
p + q − 1, S separates some terminal pair}.

F ⊆ E is feasible if and only if it contains ≥ p
edges in each critical cut.

si ti

≤ p + q − 1

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ p ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

max
∑
S∈S

p · yS −
∑
e∈E

ze

s.t.
∑

S:S∈S,e∈δ(S)

yS − ze ≤ ce ∀e ∈ E

yS , ze ≥ 0 ∀S ∈ S, ∀e ∈ E

13/18

Augmentation-based approximation algorithms

Critical cuts: S := {S ⊂ V | |δ(S)| ≤
p + q − 1, S separates some terminal pair}.

F ⊆ E is feasible if and only if it contains ≥ p
edges in each critical cut.

si ti

≤ p + q − 1

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ p ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

max
∑
S∈S

p · yS −
∑
e∈E

ze

s.t.
∑

S:S∈S,e∈δ(S)

yS − ze ≤ ce ∀e ∈ E

yS , ze ≥ 0 ∀S ∈ S, ∀e ∈ E

13/18

Augmentation

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ p ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

max
∑
S∈S

p · yS −
∑
e∈E

ze

s.t.
∑

S:S∈S,e∈δ(S)

yS − ze ≤ ce ∀e ∈ E

yS , ze ≥ 0 ∀S ∈ S, ∀e ∈ E

▶ Our primal-dual algorithm has p phases [Williamson et al. 1995].

▶ The augmentation problem: given that each critical cut contains ≥ i − 1
protected edges, we protect more edges to ensure ≥ i protected edges.

min
∑

e∈E\Xi−1

cexe max
∑
S∈Si

yS

s.t.
∑

e∈δ(S)\Xi−1

xe ≥ 1 ∀S ∈ Si s.t.
∑

S:S∈Si ,e∈δ(S)

yS ≤ ce ∀e ∈ E \ Xi−1

xe ≥ 0 ∀e ∈ E \ Xi−1 yS ≥ 0 ∀S ∈ Si

14/18

Augmentation

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ p ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

max
∑
S∈S

p · yS −
∑
e∈E

ze

s.t.
∑

S:S∈S,e∈δ(S)

yS − ze ≤ ce ∀e ∈ E

yS , ze ≥ 0 ∀S ∈ S, ∀e ∈ E

▶ Our primal-dual algorithm has p phases [Williamson et al. 1995].
▶ The augmentation problem: given that each critical cut contains ≥ i − 1

protected edges, we protect more edges to ensure ≥ i protected edges.

min
∑

e∈E\Xi−1

cexe max
∑
S∈Si

yS

s.t.
∑

e∈δ(S)\Xi−1

xe ≥ 1 ∀S ∈ Si s.t.
∑

S:S∈Si ,e∈δ(S)

yS ≤ ce ∀e ∈ E \ Xi−1

xe ≥ 0 ∀e ∈ E \ Xi−1 yS ≥ 0 ∀S ∈ Si

14/18

Augmentation

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ p ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

max
∑
S∈S

p · yS −
∑
e∈E

ze

s.t.
∑

S:S∈S,e∈δ(S)

yS − ze ≤ ce ∀e ∈ E

yS , ze ≥ 0 ∀S ∈ S, ∀e ∈ E

▶ Our primal-dual algorithm has p phases [Williamson et al. 1995].
▶ The augmentation problem: given that each critical cut contains ≥ i − 1

protected edges, we protect more edges to ensure ≥ i protected edges.

min
∑

e∈E\Xi−1

cexe max
∑
S∈Si

yS

s.t.
∑

e∈δ(S)\Xi−1

xe ≥ 1 ∀S ∈ Si s.t.
∑

S:S∈Si ,e∈δ(S)

yS ≤ ce ∀e ∈ E \ Xi−1

xe ≥ 0 ∀e ∈ E \ Xi−1 yS ≥ 0 ∀S ∈ Si

14/18

Augmentation-based approximation

(informal) Dual mapping [Williamson et al. 1995]

Given a dual feasible solution {y (i)
S } of the ith phase, we can construct a

dual feasible solution {yS , ze} to the main LP s.t.∑
S∈Si

y (i)
S ≤ 1

p − i + 1

(∑
S∈S

p · yS −
∑
e∈E

ze

)
≤ 1

p − i + 1Opt .

(informal) Total cost of p phases

Given a K -approximation algorithm for the augmentation problem, the
total cost of is

p∑
i=1

cost(phasei) ≤ K
∑
S∈Si

y (i)
S ≤ K

p∑
i=1

1
p − i + 1Opt = O(K log p·Opt).

15/18

Augmentation-based approximation

(informal) Dual mapping [Williamson et al. 1995]

Given a dual feasible solution {y (i)
S } of the ith phase, we can construct a

dual feasible solution {yS , ze} to the main LP s.t.∑
S∈Si

y (i)
S ≤ 1

p − i + 1

(∑
S∈S

p · yS −
∑
e∈E

ze

)
≤ 1

p − i + 1Opt .

(informal) Total cost of p phases

Given a K -approximation algorithm for the augmentation problem, the
total cost of is

p∑
i=1

cost(phasei) ≤ K
∑
S∈Si

y (i)
S ≤ K

p∑
i=1

1
p − i + 1Opt = O(K log p·Opt).

15/18

Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p or q.
▶ (p, 1)-SCP.
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p · min{log n, p + q})-approximation for (p, q)-GCP.

16/18

Open questions

▶ (1, q)-GCP when q ≥ 3 is constant.

▶ q = mincut, i.e. find minimum-cost edge set that intersects with all
minimum cuts.

▶ FPT results?

17/18

Open questions

▶ (1, q)-GCP when q ≥ 3 is constant.

▶ q = mincut, i.e. find minimum-cost edge set that intersects with all
minimum cuts.

▶ FPT results?

17/18

Open questions

▶ (1, q)-GCP when q ≥ 3 is constant.

▶ q = mincut, i.e. find minimum-cost edge set that intersects with all
minimum cuts.

▶ FPT results?

17/18

Open questions

▶ (1, q)-GCP when q ≥ 3 is constant.

▶ q = mincut, i.e. find minimum-cost edge set that intersects with all
minimum cuts.

▶ FPT results?

17/18

Augmentation-based approximation

We solve the augmentation problems approximately.
▶ (p + q − 1)-approximation for (p, q)-SCP, assuming p is constant.
▶ O(min{log n, p + q})-approximation for (p, q)-GCP.

Idea:
▶ Starting from y = 0, iteratively find a violating cut S and increase yS .
▶ Use the “capacity trick” to distinguish violating and non-violating cuts.
▶ For (p, q)-GCP, set u s.t. u(violating cuts) ≤ 2u(mincut).
▶ The number of 2-approximate mincuts is polynomial and they can be

enumerated in polynomial time [Karger 1993].

18/18

Augmentation-based approximation

We solve the augmentation problems approximately.
▶ (p + q − 1)-approximation for (p, q)-SCP, assuming p is constant.
▶ O(min{log n, p + q})-approximation for (p, q)-GCP.

Idea:
▶ Starting from y = 0, iteratively find a violating cut S and increase yS .

▶ Use the “capacity trick” to distinguish violating and non-violating cuts.
▶ For (p, q)-GCP, set u s.t. u(violating cuts) ≤ 2u(mincut).
▶ The number of 2-approximate mincuts is polynomial and they can be

enumerated in polynomial time [Karger 1993].

18/18

Augmentation-based approximation

We solve the augmentation problems approximately.
▶ (p + q − 1)-approximation for (p, q)-SCP, assuming p is constant.
▶ O(min{log n, p + q})-approximation for (p, q)-GCP.

Idea:
▶ Starting from y = 0, iteratively find a violating cut S and increase yS .
▶ Use the “capacity trick” to distinguish violating and non-violating cuts.

▶ For (p, q)-GCP, set u s.t. u(violating cuts) ≤ 2u(mincut).
▶ The number of 2-approximate mincuts is polynomial and they can be

enumerated in polynomial time [Karger 1993].

18/18

Augmentation-based approximation

We solve the augmentation problems approximately.
▶ (p + q − 1)-approximation for (p, q)-SCP, assuming p is constant.
▶ O(min{log n, p + q})-approximation for (p, q)-GCP.

Idea:
▶ Starting from y = 0, iteratively find a violating cut S and increase yS .
▶ Use the “capacity trick” to distinguish violating and non-violating cuts.
▶ For (p, q)-GCP, set u s.t. u(violating cuts) ≤ 2u(mincut).
▶ The number of 2-approximate mincuts is polynomial and they can be

enumerated in polynomial time [Karger 1993].

18/18

