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» An undirected graph G = (V, E) with edge cost c: E — R,..
» The attacker’'s budget g.

Output: Min-cost protected edge set F C E s.t. G retains certain con-
nectivity properties after removals of arbitrary < g unprotected edges.

Different connectivity properties: p-edge-connectivity
» between multiple terminal-pairs (s1, t1), ..., (sk, tk): (p, g)-SCP.
» over the entire graph: (p, g)-GCP.

» between given (s, t): (p, q)-stCP. — a slightly more general model
Preventing Small (s, t)-Cut [Griittemeier, Komusiewicz, Morawietz and Sommer, WG21]
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Related network design problems

Consider g > |E]|, i.e., the attacker can remove all unprotected edges.

Survivable Network Design: Select a minimum-cost spanning subgraph from a
given graph, satisfying certain connectivity requirements.

» Minimum Steiner Tree (Forest) [(Bern and O
Plassmann, IPL 1989)]. (1, ¢)-SCP is APX-hard.

» Minimum p-edge-connected Spanning
Subgraph [Czumaj et al., SODA 1999].
(p, q)-GCP is APX-hard.

» The NP-hardness of (1, q)-GCP is 8 3 3
unknown (equivalent to Minimum 3
Spanning Tree when g > |E|). O 2 O

2 3 1
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Flexible Network Design [Adjiashvili, Hommelsheim, Miihlenthaler, MP22]:
» Given an undirected graph G with edge .
» The edges are either safe or unsafe (non-uniform failure model).
» Select a minimum-cost spanning subgraph G’(V, F).
» G’ retains p-edge-connectivity after < g failures of unsafe edges.
>

Approximation for constant p or g [Bansal et al., ICALP23] [Chekuri et al., ICALP23].

(a) (1.q)-SCP (b) (L.a)-FND

Figure: Reduction from (1, q)-SCP to (1, g)-Flexible Network Design.
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A toy example: (1,1)-SCP

The attacker will only remove bridges.

The optimal solution is to protect all bridges that separates some (s;, t;)!

7/18



Generalization to (p,1)-SCP

8/18



Generalization to (p,1)-SCP

Algorithm for (p,1)-SCP ]

» Consider critical cuts: p-edge-cuts which separates some (s;, t;).
» Protect all edges in critical cuts.

8/18



Generalization to (p,1)-SCP

Algorithm for (p,1)-SCP ]

» Consider critical cuts: p-edge-cuts which separates some (s;, t;).
» Protect all edges in critical cuts.

Question: Implementation in polynomial time?

8/18



Generalization to (p,1)-SCP

Algorithm for (p,1)-SCP ]

» Consider critical cuts: p-edge-cuts which separates some (s;, t;).
» Protect all edges in critical cuts.

Question: Implementation in polynomial time?

» Unsafe cuts: critical but have < p protected edges.
> Safe cuts: not critical or already have p protected edges.

unsafe safe safe

8/18



Generalization to (p,1)-SCP

Algorithm for (p,1)-SCP ]

» Consider critical cuts: p-edge-cuts which separates some (s;, t;).
» Protect all edges in critical cuts.

Question: Implementation in polynomial time?

» Unsafe cuts: critical but have < p protected edges.
> Safe cuts: not critical or already have p protected edges.

unsafe safe safe

Idea: lteratively find an unsafe cut and protect the edges in the cut.
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The capacity trick: distinguish safe and unsafe cuts

Idea:
» Properly define u: E — R>q s.t. u(safe cut) > u(unsafe cut).

» Compute minimum-capacity (s;, t;) cuts to find unsafe cuts.
The capacity function:
» u(e) = 1if e is unprotected.

> ule)=1+ % if e is protected.

unsafe
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Overview of our results
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A Divide and Conquer algorithm for (1,2)-SCP

A decomposition lemma ]
J
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into disjoint 2EC subgraphs Gy, ..., Gk s.t. G/ U;(:1 G; forms a cycle.

(a) Rectangles are terminals.
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A decomposition lemma ]
J

There is a polynomial-time algorithm which decompose a 2EC graph G
into disjoint 2EC subgraphs Gy, ..., Gk s.t. G/ U;(:1 G; forms a cycle.

8 ;

(a) Rectangles are terminals. b) Independent sub-instances
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» Our primal-dual algorithm has p phases [williamson et al. 1995].

» The augmentation problem: given that each critical cut contains >/ — 1
protected edges, we protect more edges to ensure > j protected edges.

min E CeXe max E Ys

e€E\X;_1 SeS;
s.t. Z Xe>1 VSeS; s.t. Z ys<c. Vee E\X_1
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Augmentation-based approximation

'_[ (informal) Dual mapping [Williamson et al. 1995] ]

Given a dual feasible solution {yg)} of the ith phase, we can construct a
dual feasible solution {ys, z.} to the main LP s.t.

(i) 1 1
Zys < M(%P‘YSZ%) < mOPT-

SeS; ecE
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'_[ (informal) Dual mapping [Williamson et al. 1995] ]

Given a dual feasible solution {yg)} of the ith phase, we can construct a
dual feasible solution {ys, z.} to the main LP s.t.

i 1
S A< s (Tee-Ta) < jopor

SeS; ecE

’_[ (informal) Total cost of p phases |

Given a K-approximation algorithm for the augmentation problem, the
total cost of is

p

— 1
ses; i1 P

1
Z cost(phase;)) < K >y < K> —— 7077 = O(K log p-OrT).
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Overview of our results

Hardness:
> (1,q)-GCP is NP-hard even if c(e) = 1.
> Verifying a solution to (p, g)-stCP is NP-complete.

» This implies that there is no a-approximation, which also holds for
(p, g)-Flexible Network Design.

Exact algorithms for small values of p or q.
> (p,1)-SCP.
> (1,2)-SCP, (2,2)-GCP.

Approximation algorithms for general values of p, g.
» O(q - log p)-approximation for (p, q)-SCP assuming p is constant.
» O(log p - min{log n, p 4+ q})-approximation for (p, q)-GCP.
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We solve the augmentation problems approximately.
» (p+ g — 1)-approximation for (p, q)-SCP, assuming p is constant.
» O(min{log n, p + q})-approximation for (p, g)-GCP.

Idea:
» Starting from y = 0, iteratively find a violating cut S and increase ys.
P> Use the “capacity trick” to distinguish violating and non-violating cuts.
» For (p, q)-GCP, set u s.t. u(violating cuts) < 2u(mincut).

» The number of 2-approximate mincuts is polynomial and they can be
enumerated in polynomial time [Karger 1993].
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