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Problem Definition
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An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges
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We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E ) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18



Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E ) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18



Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E ) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18



Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E ) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18



Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E ) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18



Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E ) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18



Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E ) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18



Problem Definition

s1

s2

t2

t1

An attacker aims to disconnect some (si , ti) by removing at most q = 2 edges

1

1

3

1

1

2

2

1

1

1

We (as the defender) protect the edges in advance by paying costIn short, we robustify the network assuming at most q edge failures

Input:
▶ An undirected graph G = (V , E ) with edge cost c : E → R≥0.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

1/18



Problem Definition

Input:
▶ An undirected graph G = (V , E ) with edge cost c : E → R+.
▶ The attacker’s budget q.

Output: Min-cost protected edge set F ⊆ E s.t. G retains certain con-
nectivity properties after removals of arbitrary ≤ q unprotected edges.

Different connectivity properties: p-edge-connectivity
▶ between multiple terminal-pairs (s1, t1), . . . , (sk , tk): (p, q)-SCP.

▶ over the entire graph: (p, q)-GCP.
▶ between given (s, t): (p, q)-stCP.

→ a slightly more general model
Preventing Small (s, t)-Cut [Grüttemeier, Komusiewicz, Morawietz and Sommer, WG21]
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Related network design problems

Consider q ≥ |E |, i.e., the attacker can remove all unprotected edges.

Survivable Network Design: Select a minimum-cost spanning subgraph from a
given graph, satisfying certain connectivity requirements.

▶ Minimum Steiner Tree (Forest) [(Bern and
Plassmann, IPL 1989)]. (1, q)-SCP is APX-hard.

▶ Minimum p-edge-connected Spanning
Subgraph [Czumaj et al., SODA 1999].
(p, q)-GCP is APX-hard.

▶ The NP-hardness of (1, q)-GCP is
unknown (equivalent to Minimum
Spanning Tree when q ≥ |E |).
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Related network design problems
Flexible Network Design [Adjiashvili, Hommelsheim, Mühlenthaler, MP22]:
▶ Given an undirected graph G with edge .
▶ The edges are either safe or unsafe (non-uniform failure model).

▶ Select a minimum-cost spanning subgraph G ′(V , F ).
▶ G ′ retains p-edge-connectivity after ≤ q failures of unsafe edges.
▶ Approximation for constant p or q [Bansal et al., ICALP23] [Chekuri et al., ICALP23].
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(a) (1,q)-SCP
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t1c(e) 0

(b) (1,q)-FND

Figure: Reduction from (1, q)-SCP to (1, q)-Flexible Network Design.
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Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p, q.
▶ (p, 1)-SCP:
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.
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A toy example: (1, 1)-SCP

s1

s2

t2

t1

The attacker will only remove bridges.

The optimal solution is to protect all bridges that separates some (si , ti)!
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Generalization to (p, 1)-SCP

Algorithm for (p, 1)-SCP

▶ Consider critical cuts: p-edge-cuts which separates some (si , ti).
▶ Protect all edges in critical cuts.

Question: Implementation in polynomial time?

▶ Unsafe cuts: critical but have < p protected edges.
▶ Safe cuts: not critical or already have p protected edges.

si ti

unsafe

si ti

safe

si , ti

safe

Idea: Iteratively find an unsafe cut and protect the edges in the cut.
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The capacity trick: distinguish safe and unsafe cuts

Idea:
▶ Properly define u : E → R≥0 s.t. u(safe cut) > u(unsafe cut).
▶ Compute minimum-capacity (si , ti) cuts to find unsafe cuts.

The capacity function:
▶ u(e) = 1 if e is unprotected.
▶ u(e) = 1 + 1

p if e is protected.

si ti

1 + 1
p

1

unsafe

si ti

1 + 1
p

safe

si , ti
1 + 1

p

1

safe
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Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p or q.
▶ (p, 1)-SCP.
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

10/18



A Divide and Conquer algorithm for (1, 2)-SCP

A decomposition lemma

There is a polynomial-time algorithm which decompose a 2EC graph G
into disjoint 2EC subgraphs G1, . . . , Gk s.t. G/

⋃k
i=1 Gi forms a cycle.

(a) Rectangles are terminals.

0 0

0

0

(b) Independent sub-instances

11/18



A Divide and Conquer algorithm for (1, 2)-SCP

A decomposition lemma

There is a polynomial-time algorithm which decompose a 2EC graph G
into disjoint 2EC subgraphs G1, . . . , Gk s.t. G/

⋃k
i=1 Gi forms a cycle.

(a) Rectangles are terminals.

0 0

0

0

(b) Independent sub-instances

11/18



Overview of our results

Hardness:
▶ (1, q)-GCP is NP-hard even if c(e) ≡ 1.
▶ Verifying a solution to (p, q)-stCP is NP-complete.
▶ This implies that there is no α-approximation, which also holds for

(p, q)-Flexible Network Design.

Exact algorithms for small values of p or q.
▶ (p, 1)-SCP.
▶ (1, 2)-SCP, (2, 2)-GCP.

Approximation algorithms for general values of p, q.
▶ O(q · log p)-approximation for (p, q)-SCP assuming p is constant.
▶ O(log p min{log n, p + q})-approximation for (p, q)-GCP.

12/18



Augmentation-based approximation algorithms

Critical cuts: S := {S ⊂ V | |δ(S)| ≤
p + q − 1, S separates some terminal pair}.

F ⊆ E is feasible if and only if it contains ≥ p
edges in each critical cut.

si ti

≤ p + q − 1

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ p ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

max
∑
S∈S

p · yS −
∑
e∈E

ze

s.t.
∑

S:S∈S,e∈δ(S)

yS − ze ≤ ce ∀e ∈ E

yS , ze ≥ 0 ∀S ∈ S, ∀e ∈ E
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Augmentation

min
∑
e∈E
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▶ Our primal-dual algorithm has p phases [Williamson et al. 1995].

▶ The augmentation problem: given that each critical cut contains ≥ i − 1
protected edges, we protect more edges to ensure ≥ i protected edges.

min
∑

e∈E\Xi−1

cexe max
∑
S∈Si

yS

s.t.
∑

e∈δ(S)\Xi−1

xe ≥ 1 ∀S ∈ Si s.t.
∑

S:S∈Si ,e∈δ(S)

yS ≤ ce ∀e ∈ E \ Xi−1

xe ≥ 0 ∀e ∈ E \ Xi−1 yS ≥ 0 ∀S ∈ Si
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Augmentation-based approximation

(informal) Dual mapping [Williamson et al. 1995]

Given a dual feasible solution {y (i)
S } of the ith phase, we can construct a

dual feasible solution {yS , ze} to the main LP s.t.∑
S∈Si

y (i)
S ≤ 1

p − i + 1

( ∑
S∈S

p · yS −
∑
e∈E

ze

)
≤ 1

p − i + 1Opt .

(informal) Total cost of p phases

Given a K -approximation algorithm for the augmentation problem, the
total cost of is

p∑
i=1

cost(phasei) ≤ K
∑
S∈Si

y (i)
S ≤ K

p∑
i=1

1
p − i + 1Opt = O(K log p·Opt).
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Open questions

▶ (1, q)-GCP when q ≥ 3 is constant.

▶ q = mincut, i.e. find minimum-cost edge set that intersects with all
minimum cuts.

▶ FPT results?
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Augmentation-based approximation

We solve the augmentation problems approximately.
▶ (p + q − 1)-approximation for (p, q)-SCP, assuming p is constant.
▶ O(min{log n, p + q})-approximation for (p, q)-GCP.

Idea:
▶ Starting from y = 0, iteratively find a violating cut S and increase yS .
▶ Use the “capacity trick” to distinguish violating and non-violating cuts.
▶ For (p, q)-GCP, set u s.t. u(violating cuts) ≤ 2u(mincut).
▶ The number of 2-approximate mincuts is polynomial and they can be

enumerated in polynomial time [Karger 1993].

18/18



Augmentation-based approximation

We solve the augmentation problems approximately.
▶ (p + q − 1)-approximation for (p, q)-SCP, assuming p is constant.
▶ O(min{log n, p + q})-approximation for (p, q)-GCP.

Idea:
▶ Starting from y = 0, iteratively find a violating cut S and increase yS .

▶ Use the “capacity trick” to distinguish violating and non-violating cuts.
▶ For (p, q)-GCP, set u s.t. u(violating cuts) ≤ 2u(mincut).
▶ The number of 2-approximate mincuts is polynomial and they can be

enumerated in polynomial time [Karger 1993].

18/18



Augmentation-based approximation

We solve the augmentation problems approximately.
▶ (p + q − 1)-approximation for (p, q)-SCP, assuming p is constant.
▶ O(min{log n, p + q})-approximation for (p, q)-GCP.

Idea:
▶ Starting from y = 0, iteratively find a violating cut S and increase yS .
▶ Use the “capacity trick” to distinguish violating and non-violating cuts.

▶ For (p, q)-GCP, set u s.t. u(violating cuts) ≤ 2u(mincut).
▶ The number of 2-approximate mincuts is polynomial and they can be

enumerated in polynomial time [Karger 1993].

18/18



Augmentation-based approximation

We solve the augmentation problems approximately.
▶ (p + q − 1)-approximation for (p, q)-SCP, assuming p is constant.
▶ O(min{log n, p + q})-approximation for (p, q)-GCP.

Idea:
▶ Starting from y = 0, iteratively find a violating cut S and increase yS .
▶ Use the “capacity trick” to distinguish violating and non-violating cuts.
▶ For (p, q)-GCP, set u s.t. u(violating cuts) ≤ 2u(mincut).
▶ The number of 2-approximate mincuts is polynomial and they can be

enumerated in polynomial time [Karger 1993].

18/18


