Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

Úrsula Hébert-Johnson UC Santa Barbara

Joint work with Daniel Lokshtanov

Def: A graph is *chordal* if it has no induced cycles of length at least 4.

not chordal

Pop quiz: Is this graph chordal?

Why sample random graphs?

Graph sampling is useful for generating random test cases for software testing and can be helpful for testing conjectures.

Already known...

There is an algorithm for sampling/counting *n*-vertex labeled chordal graphs that uses $O(n^7)$ arithmetic operations.

(Hébert-Johnson, Lokshtanov, and Vigoda, 2023)

 $2^{\binom{n}{2}}$ labeled graphs on *n* vertices

polynomial-time algorithm for counting unlabeled graphs? OPEN

To sample a labeled graph: flip a coin for each of the $\binom{n}{2}$ potential edges Expected polynomial-time sampling algorithm for unlabeled graphs (Wormald, 1987) Input: *n*

Goal: Generate an *n*-vertex unlabeled chordal graph uniformly at random

Our result: A sampling algorithm that uses $O(n^7)$ arithmetic operations in expectation

Automorphisms

Let π be a permutation of $[n] \coloneqq \{1, 2, ..., n\}$. Let G be a labeled graph with vertex set [n].

We say π is an *automorphism* of G if

u and *v* are adjacent $\Leftrightarrow \pi(u)$ and $\pi(v)$ are adjacent for all $u, v \in V(G)$.

labeled chordal graphs

An entry of **1** for (π, G) means π is an automorphism of G.

labeled chordal graphs

By Burnside's lemma, the number of 1s for each unlabeled graph is n!

Fixed points and moved points

Let π be a permutation of $[n] \coloneqq \{1, 2, ..., n\}$. fix $(\pi) = \{i \in [n] : \pi(i) = i\}, \text{move}(\pi) = \{i \in [n] : \pi(i) \neq i\}$ Let n = 4.

Observation: $|move(\pi)| \in \{0, 2, 3, ..., n\}$

labeled chordal graphs

Goal: Sample a random **1** from the matrix of permutations and labeled chordal graphs.

This gives uniform weight (i.e., weight *n*!) to all unlabeled chordal graphs.

Idea: Group permutations (rows) by their number of moved points μ

Overall strategy:

- 1. Choose a random value of $\mu \in \{0, 2, 3, ..., n\}$ (weighted correctly)
- 2. Choose a random permutation π such that $|move(\pi)| = \mu$
- 3. Sample a random labeled chordal graph G with automorphism π
- 4. Return *G* without labels

Efficiently choosing a random value of μ

We want to choose a random number of moved points $\mu \in \{0, 2, 3, ..., n\}$ according to a distribution proportional to A,

i.e., $\Pr(\mu = k) = \frac{a_k}{\sum_i a_i}$ for all k.

Suppose that, given k, we can compute a_k in time 2^k .

Computing all of $a_0, a_2, a_3, \dots, a_n$ would take exponential time.

Efficiently choosing a random value of μ

 $A = (a_0, a_2, a_3, \dots, a_n)$

 $B = (b_0, b_2, b_3, \dots, b_n)$ $b_0 = a_0, \quad b_i \ge a_i \text{ for all } i \ge 2$

We want to choose $\mu \in \{0, 2, 3, ..., n\}$ such that $Pr(\mu = k) = \frac{a_k}{\sum_i a_i}$ for all k.

Suppose that, given k, we can compute a_k in time 2^k .

Efficiently choosing a random value of μ

 $A = (a_0, a_2, a_3, \dots, a_n)$

 $B = (b_0, b_2, b_3, \dots, b_n)$ $b_0 = a_0, \quad b_i \ge a_i \text{ for all } i \ge 2$

We want to choose $\mu \in \{0, 2, 3, ..., n\}$ such that $Pr(\mu = k) = \frac{a_k}{\sum_i a_i}$ for all k.

Suppose that, given k, we can compute a_k in time 2^k .

Algorithm for choosing μ :

- 1. Choose μ at random such that $\Pr(\mu = k) = \frac{b_k}{\sum_i b_i}$ for all k
- 2. Restart with probability $\frac{b_{\mu} a_{\mu}}{b_{\mu}} = 1 \frac{a_{\mu}}{b_{\mu}}$

3. Return μ

Output distribution:
$$\Pr(\mu = k) = \frac{b_k}{\sum_i b_i} \cdot \frac{a_k}{b_k} = \frac{a_k}{\sum_i b_i}$$

This algorithm can be fast if large values of μ are unlikely according to *B*. **Goal:** Sample a random **1** from the matrix of permutations / labeled chordal graphs.

Overall strategy:

- 1. Choose a random value of $\mu \in \{0, 2, 3, ..., n\}$ (weighted correctly)
- 2. Choose a random permutation π such that $|\text{move}(\pi)| = \mu$
- 3. Sample a random labeled chordal graph G with automorphism π
- 4. Return *G* without labels

Goal: Sample a random **1** from the matrix of permutations / labeled chordal graphs.

Overall strategy:

- 1. Choose a random value of $\mu \in \{0, 2, 3, ..., n\}$ (weighted correctly)
- 2. Choose a random permutation π such that $|move(\pi)| = \mu$
- 3. Sample a random labeled chordal graph G with automorphism π
- 4. Return *G* without labels

Steps 1 and 2:

Use a similar approach to the previous slide. Need to define upper bounds b_{μ} and prove that $b_{\mu} \ge (\# \text{ of } \pi \text{ with } \mu \text{ moved points}) \cdot (\# \text{ of graphs with automorphism } \hat{\pi})$ for all $\hat{\pi}$ with μ moved points.

Step 3:

Use an algorithm based upon the DP algorithm for sampling labeled chordal graphs. \swarrow

