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e (Slightly non-)linear: as in linear logic
e higher-order: as in functional programming / A-calculus

e tree transducers: automata for tree-to-tree functions

Comparing the expressive power of automata-like devices:
storing A-terms Vs. more conventional

First: conventional examples on strings
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Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 , 95 }, initial state g7°
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Example: states Q = {477,495 , 95 }, initial state g7°
q . @b) =g g, cqy gy, (alble) = g3 g3, b accept

«—

q3

> a b a c <

Theorem (Rabin & Scott / Shepherdson 1959)

Two-way automata = one-way automata (= regular languages)

— rightfully belong to “finite-state computation”

= so does their extension with string outputs o
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mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

(alclalbf#]blcl#]c]al]

X =uac Y = baca#cb# mapReverse(...) = YX = bacatcb#ac

Important point

X, Y concatenable, but not inspectable (“if X[k] = a then...”)
— control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE 5/10



Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

6/10



Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

Theorem (=~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

6/10



Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

Theorem (=~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make o a base type of non-inspectable trees

6/10



Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

Theorem (=~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make o a base type of non-inspectable trees

k

memory type A =0" » k-state top-down (sic!) tree transducer

6/10



Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

Theorem (=~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make o a base type of non-inspectable trees

k

memory type A =0" » k-state top-down (sic!) tree transducer

A=(01=0)x--x (0% =>0) » k-state macro tree transducer, e.g. previous slide!
[Engelfriet & Vogler 1986 ], staple of “old-school” transducer theory
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—> Idea: restrict expressivity using type system!
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Problem (feature?): HO tree transducers can express a lot of functions
—> Idea: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS’24])
Affine HO string transducers = two-way transducers (= MSO transductions)

i.e. replace A = B by affine A —o B which can only use A once to produce B
~ “single use restrictions” in automata theory

[Original thm. in “implicit automata” POV: express functions internally in A-calculus]

Conjecture (N. & Pradic, ICALP’21)

Affine HO tree automata < reqular tree languages
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Results of the paper (1)

Tree-walking: generalization of two-way automata
1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers C  reversible tree-walking aut./trans.
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Results of the paper (1)

Tree-walking: generalization of two-way automata

1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers C  reversible tree-walking aut./trans.

Almost affine HO tree automata/transducers C  tree-walking aut. /trans.

Inexpressivity conjecture from last slide follows from:

Theorem (Bojaniczyk & Colcombet 2005)

Tree-walking automata < regular tree languages

Almost affine [Kanazawa|: the base type o can be duplicated, but not the others
< “sharing” in the configuration graph of a tree-walking transducer
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Results of the paper (2)

Lookaround = can inspect regular information at each node
= preprocessing by very simple transducers / MSO relabeling

Corollary (new proof of [ Kanazawa 2008; Gallot, Lemay & Salvati 2020])

Affine HO tree transducers with lookaround =  MSO transductions
Almost affine HO tree trans. w/ lookaround =  unfolding o MSOT
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Lookaround = can inspect regular information at each node
= preprocessing by very simple transducers / MSO relabeling

Corollary (new proof of [ Kanazawa 2008; Gallot, Lemay & Salvati 2020])

Affine HO tree transducers with lookaround =  MSO transductions
Almost affine HO tree trans. w/ lookaround =  unfolding o MSOT

Other way to overcome inexpressivity [N. & Pradic]: add &/® types
A ® B (“multiplicative”) VS. A & B (“additive”)
(better suited to “implicit automata” POV)
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