Slightly non-linear higher-order tree transducers

Lé Thanh Diing (Tito) Nguyén (Aix-Marseille Univ.)
joint work with Gabriele Vanoni (IRIF, Paris)

STACS 2025 (Marseille _online Jena)

1/10

e (Slightly non-)linear: as in linear logic

e higher-order: as in functional programming / A-calculus

2/10

e (Slightly non-)linear: as in linear logic
e higher-order: as in functional programming / A-calculus

e tree transducers: automata for tree-to-tree functions

2/10

e (Slightly non-)linear: as in linear logic
e higher-order: as in functional programming / A-calculus

e tree transducers: automata for tree-to-tree functions

Comparing the expressive power of automata-like devices:

storing A-terms Vs. more conventional

2/10

e (Slightly non-)linear: as in linear logic
e higher-order: as in functional programming / A-calculus

e tree transducers: automata for tree-to-tree functions

Comparing the expressive power of automata-like devices:
storing A-terms Vs. more conventional

First: conventional examples on strings

2/10

Two-way automata

Transitions: update finite state + move left/right depending on new state
Example: states Q = {477,495 , 95 }, initial state g7°

q . @b) =g g, cqy gy, (alble) = g3 g3, b accept

3/10

Two-way automata

Transitions: update finite state + move left/right depending on new state
Example: states Q = {477,495 , 95 }, initial state g7°
q . @b) =g g, cqy gy, (alble) = g3 g3, b accept

—

h!

> a b a c <

3/10

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 , 95 }, initial state g7°

g @b) =g g, ey gy, (alble) = g3 g3, b accept
0
> a b a c o <

3/10

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 , 95 }, initial state g7°

g @b) =g g, ey gy, (alble) = g3 g3, b accept
I
> a b a c o <

3/10

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 , 95 }, initial state g7°

g @b) =g g, ey gy, (alble) = g3 g3, b accept
@
> a b a c o <

3/10

Two-way automata

Transitions: update finite state + move left/right depending on new state
Example: states Q = {477,495 , 95 }, initial state g7°
g @b) =g g, c=qy gy, (alble) = g3 g3, b accept

«—

q2

> a b a c <

3/10

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 , 95 }, initial state g7°

qr.@b) =g g, ceqy gy, (alble) = g3 g3, b accept
qs
> a b a c o <

3/10

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 , 95 }, initial state g7°

qr @b =g g, cqy gy, (alble) = g3 g5, b accept
qs
> a b a c e <

Theorem (Rabin & Scott / Shepherdson 1959)

Two-way automata = one-way automata (= regular languages)

— rightfully belong to “finite-state computation”

3/10

Two-way automata

Transitions: update finite state + move left/right depending on new state
Example: states Q = {477,495 , 95 }, initial state g7°
q . @b) =g g, cqy gy, (alble) = g3 g3, b accept

«—

q3

> a b a c <

Theorem (Rabin & Scott / Shepherdson 1959)

Two-way automata = one-way automata (= regular languages)

— rightfully belong to “finite-state computation”

= so does their extension with string outputs o

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

(x€fa,b,c})

(>lalblcl#lblajcl#]c|b]|a]

Output:

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x

Hi# xle

(x€fa,b,c})

(>lalblcl#lblajcl#]c|b]|a]

Output:

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x

Hi# xle

(x€fa,b,c})

(>lalblcl#lblajcl#]c|b]|a]

Output: a

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x

Hi# xle

(x€fa,b,c})

(>lalblcl#lblajcl#]c|b]|a]

Output: ab

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)
x|x Hi# xle

X|x
e

#,<|e #,D|¢e

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

Output: abec

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

(x€fa,b,c})

l
(>lalblcl#[blalcl#]c|[b]|<]

Output: abecb

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

(x€fa,b,c})

l
(>lalblcl#[blalcl#]c|[b]|<]

Output: abccba

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# x|e

(x€fa,b,c})

l
(>lalblcl#[blalcl#]c|[b]|<]

Output: abccba

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# x|e

Output: abccba

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# x|e

Output: abccba

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x i xle

e

(x€fa,b,c})

l

(>lalblcl#lblajcl#]c|b]|a]

Output: abccba

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x

Hi# xle

(x€fa,b,c})

l

(>lalblcl#lblajcl#]c|b]|a]

Output: abccba#

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x

Hi# xle

Output: abccba#b

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x

Hi# xle

(x€fa,b,c})

1

(>lalblcl#lblajcl#]c|b]|a]

Output: abccba#ba

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)
x|x Hi# xle

X|x
e

(e A (x € (a,b,c))

1
(>lalblcl#[blalcl#]c|[b]|<]

Output: abccba#bac

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

(x€fa,b,c})

1

(>lalblcl#lblajcl#]c|b]|a]

Output: abccba#bac

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

Output: abccba#tbacc

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

(x€fa,b,c})

l

(>lalblcl#lblajcl#]c|b]|a]

Output: abccba#bacca

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

Output: abccba#baccab

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# x|e

(x€fa,b,c})

l

(>lalblcl#lblajcl#]c|b]|a]

Output: abccba#baccab

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# x|e

Output: abccba#baccab

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# x|e

(x€fa,b,c})

1

(>lalblcl#lblajcl#]c|b]|a]

Output: abccba#baccab

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x i xle

X|x
e

Output: abccba#baccab

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x

Hi# xle

Output: abccba#baccab#

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x

Hi# xle

Output: abccba#tbaccab#c

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)
x|x Hi# xle

X|x

(e A (x € (a,b,c))

(>lalblcl#lblafcl#]c|b]

Output: abccba#baccab#ch

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

Output: abccba#baccab#ch

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

Output: abccba#baccab#cbb

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

Output: abccba#baccab#cbbe

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# x|e

Output: abccba#baccab#cbbe

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# x|e

Output: abccba#baccab#cbbe

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x Hi# xle

Output: abccba#baccab#cbbe

4/10

Two-way transducers

Example: w# ... #w, — w, - reverse(w;)# ... #w, - reverse(w,)

x|x By

Output: abccba#baccab#cbbe

4/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

l
| a

| clalbf#]blc#]c]al

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

!
lalclalbv|#[bplc#]c]|al

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

(alclalbf#]blcl#]c]al]

X=c¢ Y = bacattcb#

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

(alclalbf#]blcl#]c]al]

X=c Y = bacattcb#

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

(alclalbf#]blcl#]c]al]

X =ac Y = baca#cb#

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

(alclalbf#]blcl#]c]al]

X =uac Y = baca#cb# mapReverse(...) = YX = bacatcb#ac

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

(alclalbf#]blcl#]c]al]

X =uac Y = baca#cb# mapReverse(...) = YX = bacatcb#ac

Important point

X, Y concatenable, but not inspectable (“if X[k] = a then...”)
— control flow stays finite-state

5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

(alclalbf#]blcl#]c]al]

X =uac Y = baca#cb# mapReverse(...) = YX = bacatcb#ac

Important point

X, Y concatenable, but not inspectable (“if X[k] = a then...”)
— control flow stays finite-state

What can you “reasonably” put in memory? 5/10

How to realize this with a one-way device?

mapReverse: {a,b,c,#* — {ab,c #}*
wi# ... #w, +— reverse(w,)#..#reverse(w,)

(alclalbf#]blcl#]c]al]

X =uac Y = baca#cb# mapReverse(...) = YX = bacatcb#ac

Important point

X, Y concatenable, but not inspectable (“if X[k] = a then...”)
— control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE 5/10

Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

6/10

Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

Theorem (=~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

6/10

Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

Theorem (=~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make o a base type of non-inspectable trees

6/10

Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

Theorem (=~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make o a base type of non-inspectable trees

k

memory type A =0" » k-state top-down (sic!) tree transducer

6/10

Higher-order tree automata / transducers: simply typed A-calculus

Bottom-up tree aut.: a(b(c),c) — accept?(8,(0p(5.), 6,)) with 6,: Q*> = Q, ...
Higher-order tree aut.: a(b(c),c) — accept? (t, (t, t.) t.) with t, : A2 = A, ...
Q finite set Vs. ABi:=0| AXB|A=B

Theorem (=~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make o a base type of non-inspectable trees

k

memory type A =0" » k-state top-down (sic!) tree transducer

A=(01=0)x--x (0% =>0) » k-state macro tree transducer, e.g. previous slide!
[Engelfriet & Vogler 1986], staple of “old-school” transducer theory

6/10

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express a lot of functions
—> Idea: restrict expressivity using type system!

7/10

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express a lot of functions
—> Idea: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS’24])
Affine HO string transducers = two-way transducers (= MSO transductions)

i.e. replace A = B by affine A —o B which can only use A once to produce B
~ “single use restrictions” in automata theory

7/10

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express a lot of functions
—> Idea: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS’24])
Affine HO string transducers = two-way transducers (= MSO transductions)

i.e. replace A = B by affine A —o B which can only use A once to produce B
~ “single use restrictions” in automata theory

[Original thm. in “implicit automata” POV: express functions internally in A-calculus]

7/10

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express a lot of functions
—> Idea: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS’24])
Affine HO string transducers = two-way transducers (= MSO transductions)

i.e. replace A = B by affine A —o B which can only use A once to produce B
~ “single use restrictions” in automata theory

[Original thm. in “implicit automata” POV: express functions internally in A-calculus]

Conjecture (N. & Pradic, ICALP’21)

Affine HO tree automata < reqular tree languages

7/10

Results of the paper (1)

Tree-walking: generalization of two-way automata
1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers C reversible tree-walking aut./trans.

8/10

Results of the paper (1)

Tree-walking: generalization of two-way automata

1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers C reversible tree-walking aut./trans.

Inexpressivity conjecture from last slide follows from:

Theorem (Bojaniczyk & Colcombet 2005)

Tree-walking automata C regular tree languages

8/10

Results of the paper (1)

Tree-walking: generalization of two-way automata

1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers C reversible tree-walking aut./trans.

Almost affine HO tree automata/transducers C tree-walking aut. /trans.

Inexpressivity conjecture from last slide follows from:

Theorem (Bojaniczyk & Colcombet 2005)

Tree-walking automata < regular tree languages

Almost affine [Kanazawa|: the base type o can be duplicated, but not the others
< “sharing” in the configuration graph of a tree-walking transducer

8/10

Results of the paper (2)

Lookaround = can inspect regular information at each node
= preprocessing by very simple transducers / MSO relabeling

Corollary (new proof of [Kanazawa 2008; Gallot, Lemay & Salvati 2020])

Affine HO tree transducers with lookaround = MSO transductions
Almost affine HO tree trans. w/ lookaround = unfolding o MSOT

9/10

Results of the paper (2)

Lookaround = can inspect regular information at each node
= preprocessing by very simple transducers / MSO relabeling

Corollary (new proof of [Kanazawa 2008; Gallot, Lemay & Salvati 2020])

Affine HO tree transducers with lookaround = MSO transductions
Almost affine HO tree trans. w/ lookaround = unfolding o MSOT

Other way to overcome inexpressivity [N. & Pradic]: add &/® types
A ® B (“multiplicative”) VS. A & B (“additive”)
(better suited to “implicit automata” POV)

9/10

Results of the paper (3)

Exponential modality !A makes A duplicable Affine = !-free

ABi=0o|A—=B|IA (A=B=!A—B) Almost affine = ‘! only on o

10/10

Results of the paper (3)

Exponential modality !A makes A duplicable Affine = !-free

ABi=o|A—-B[IA (A=B=!A-Bb) Almost affine = ‘!’ only on o

Almost I-depth 1: *!” only on almost affine types

Theorem (N. & Vanoni, this paper)

Almost I-depth 1 HO tree trans. w/ lookaround = invisible pebble tree transducers
(tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS’07])

10/10

Results of the paper (3)

Exponential modality !A makes A duplicable Affine = !-free

ABu=o0|A—B|!A (A= B=!4—B) Almost affine = ‘! only on o

Almost I-depth 1: *!” only on almost affine types

Theorem (N. & Vanoni, this paper)

Almost I-depth 1 HO tree trans. w/ lookaround = invisible pebble tree transducers
(tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS’07])

Main tool: Interaction Abstract Machine executing A-terms (coauthor’s expertise!),
automaton-like variant of Girard’s “Geometry of Interaction”

10/10

Results of the paper (3)

Exponential modality !A makes A duplicable Affine = !-free

ABu=o0|A—B|!A (A= B=!4—B) Almost affine = ‘! only on o

Almost I-depth 1: *!” only on almost affine types

Theorem (N. & Vanoni, this paper)

Almost I-depth 1 HO tree trans. w/ lookaround = invisible pebble tree transducers
(tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS’07])

Main tool: Interaction Abstract Machine executing A-terms (coauthor’s expertise!),
automaton-like variant of Girard’s “Geometry of Interaction”

Connections between Gol and two-way automata [Hines 2003]
tree-walking transducers [Katsumata 2008]
... but their category-theoretic version of Gol does not “scale” to almost !-depth 1
10/10

Results of the paper (3)

Exponential modality !A makes A duplicable Affine = !-free

ABu=o0|A—B|!A (A= B=!4—B) Almost affine = ‘! only on o

Almost I-depth 1: *!” only on almost affine types

Theorem (N. & Vanoni, this paper)

Almost I-depth 1 HO tree trans. w/ lookaround = invisible pebble tree transducers
(tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS’07])

Main tool: Interaction Abstract Machine executing A-terms (coauthor’s expertise!),
automaton-like variant of Girard’s “Geometry of Interaction”

Connections between Gol and two-way automata [Hines 2003]
tree-walking transducers [Katsumata 2008]
... but their category-theoretic version of Gol does not “scale” to almost !-depth 1
10/10

