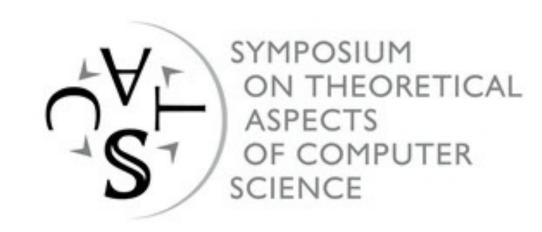
Some Recent Advancements in Monotone Circuit Complexity

Susanna F. de Rezende

Lund University

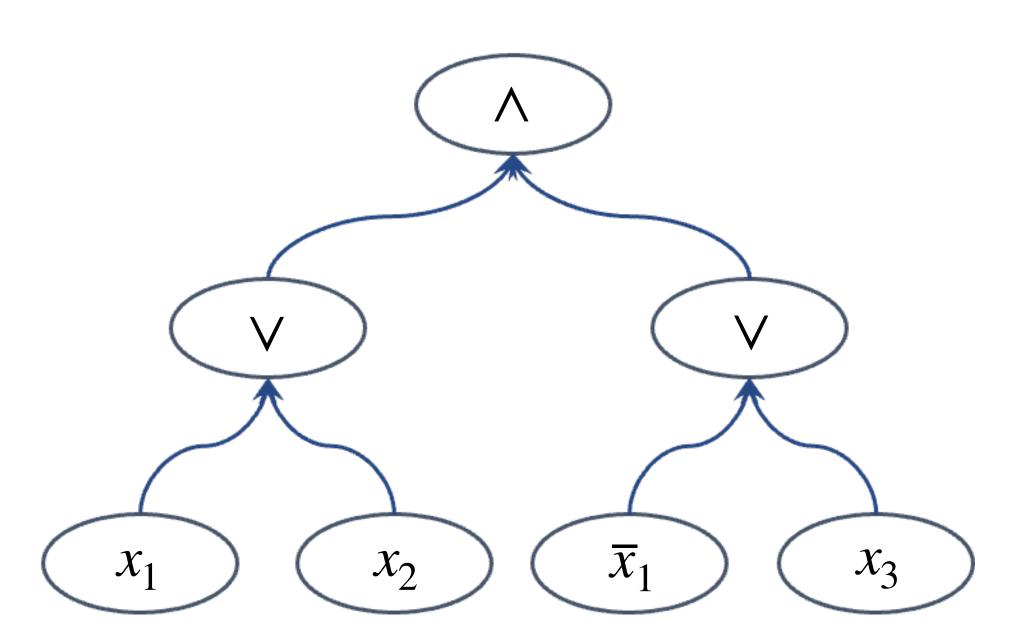
STACS, Jena March 7, 2025



Boolean Circuits

The difficulty in proving that a given boolean function has high complexity lies in the nature of our adversary: the circuit. Small circuits may work in a counterintuitive fashion, using deep, devious, and fiendishly clever ideas. How can one prove that there is no clever way to quickly compute the function? [Jukna '12]

- ▶ Input gates (Boolean literals) and ∧, ∨ gates*
- Size: # of gates, Depth: length of longest path
- Monotone if only variable as inputs
- Formula if DAG is a tree
- ▶ Depth-d lower bound (fan-in 2) for f⇒ formula size- $2^{\Omega(d)}$ lower bound for f



^{*} DeMorgan Boolean circuits: poly-equivalent to Boolean circuits

Boolean Circuits

- Most functions require circuits of size $2^n/n$ [Shanon '49]
- Goal: exhibit hard functions and understand why they are hard
- \triangleright Best lower bound until recently was 3n [Blum '84]
 - Improved to (3 + 1/86)n [Find, Golovnev, Hirsch, and Kulikov '16]
 - \square Improved to 3.1n [Li, Yang '22]

Why Study Monotone Boolean Circuits

Natural computation model for monotone functions

Why should one care about monotone circuits? The point is that this model has a purely "practical" importance. Namely, lower bounds for such circuits imply the same lower bounds for (min, +)-circuits, and hence, for dynamic programming. [Jukna '12]

Connections to non-monotone: equally powerful* for slice functions

$$f(x) = \begin{cases} 1 & \text{if } |x| > k \\ g(x) & \text{if } |x| = k \\ 0 & \text{if } |x| < k \end{cases}$$

^{*} up to constant factor and small additive factor [Berkowitz '82, Valiant '86]

Monotone Complexity of Boolean Functions

- \blacktriangleright Best lower bound for *monotone circuits/formulas* for f in NP? And for f in P?
 - \Box And for f in AC^i or NC^i ?
 - \Box Or even in AC^0 ? [Grigni and Sipser '92]

 NC^i = poly-size depth- $O(\log^i n)$ fan-in 2 circuits AC^i = poly-size depth- $O(\log^i n)$ unbounded fan-in circuits

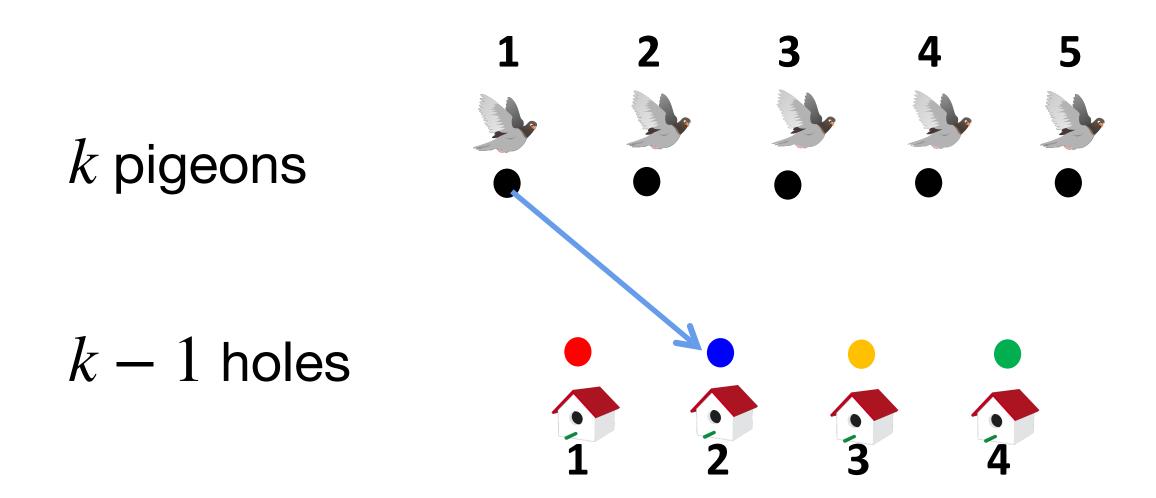
- Best separations for:
 - Monotone formulas and monotone circuits
 - \Box Monotone AC^i and NC^i , for different levels i
- Does it make sense to consider monotone circuits of (supercritical) depth > n? Are they stronger than monotone circuits of depth $\leq n$?
- ▶ What is the complexity of functions like: *st-connectivity, perfect matching, clique?*

^{*} We will not talk about other monotone model of computations (such as monotone span programs)

Warm Up: Find a Collision Problem

k pigeons k-1 holes

Warm Up: Find a Collision Problem



- Ask where any pigeons flies and write it on the blackboard (1 line)
- How many queries until guaranteed to find collision?
- Allow you to erase: how many lines need to have (simultaneously) to find collision?

Plan

Part I: Classical results

- ▶ 1985: exponential lower bounds
- ▶ 1990: Karchmer-Wigderson game for depth
- ▶ 1997: Raz-McKenzie lifting theorem for depth

Open problems

After Jukna's 2012 book: "Boolean Function Complexity: Advances and Frontiers"

Part II: Recent results

- More lower bounds
- 2017: Karchmer-Wigderson game for size
- ≥ 2018: Lifting theorem for size
- 2019-2025: Improvements and consequences

Part I: Classical results

Exponential Lower Bounds for Monotone Circuits

- Until 1985: only linear lower bounds for both monotone and non-monotone
- $\triangleright n^{\Omega(\log n)}$ -size lower bound for **clique** and **perfect matching** [Razborov '85]
- ho exp $(\Omega(n^{\epsilon}))$ -size lower bound for **Andreev function** [Andreev 185]
- ▶ Improved above to: [Alon and Boppana '87]
 - $\square n^{\Omega(\sqrt{k})}$ lower bound for k-clique for $k \le n^{2/3}$
 - $\square \exp(\tilde{\Omega}(n^{1/4}))$ lower bound for **Andreev function**

 $\Rightarrow \exp(\tilde{\Omega}(n^{1/3}))$ lower bound for **Andreev function** [Andreev '87]

Lower bound for f in ${\bf P}$

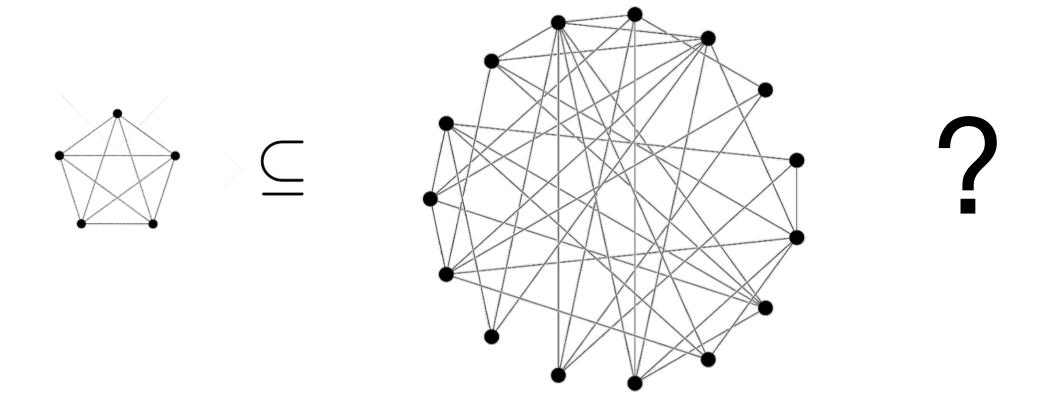
Common: approximation method

Lower bound for f in NP

Best known until 2020

A Famous NP-hard Graph Problem: Clique

 \triangleright Does G have a clique of size k?



- \triangleright Brute-force: time $n^{O(k)}$
- riangle Requires $n^{\Omega(k)}$ assuming ETH [Impagliazzo, Paturi '01, Chen, Huang, Kanj, Zia '04]

Another Famous NP-Hard Graph Problem: Colouring

- \triangleright Is there a proper colouring of vertices of G with c colours?
- \triangleright G cannot have a k-clique and be (k-1)-colourable: how hard to distinguish?

$$\mathsf{Clique}\text{-}\mathsf{Col}_k(G) := \begin{cases} 1 & \text{if } G \text{ has a } k\text{-}\mathsf{clique}, \\ 0 & \text{if } G \text{ is } (k-1)\text{-}\mathsf{colorable}, \\ * & \text{otherwise}. \end{cases}$$

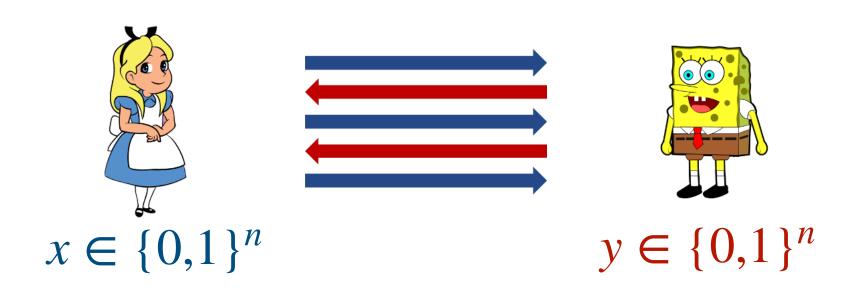
- \triangleright This is in P (because Lovász ϑ function is in P and distinguishes)
- ▶ [Razborov '85, Alon and Boppana '87]: also applies for clique-colouring
- ▶ ∃ monotone function that distinguishes [Tardos '88]

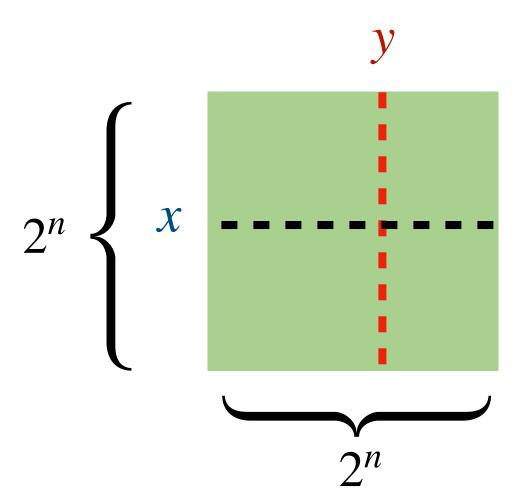
Lower bound for f in P: $\exp(\tilde{\Omega}(n^{1/6}))$

Best known until 2025

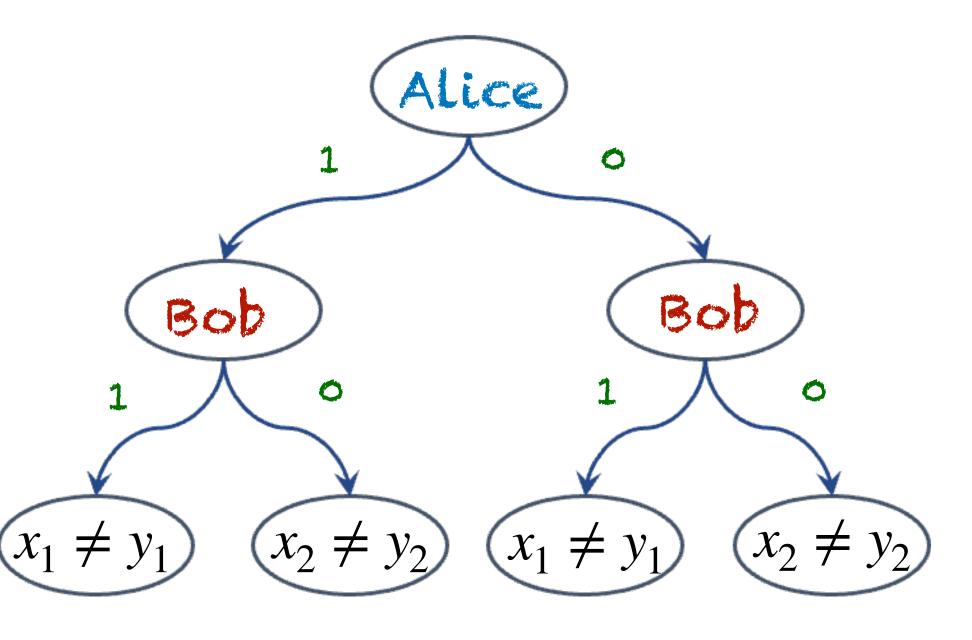
Communication complexity understanding circuit depth

Game: Find a Differing Bit

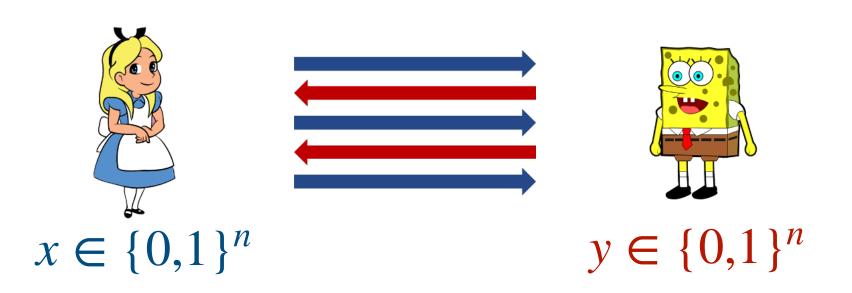




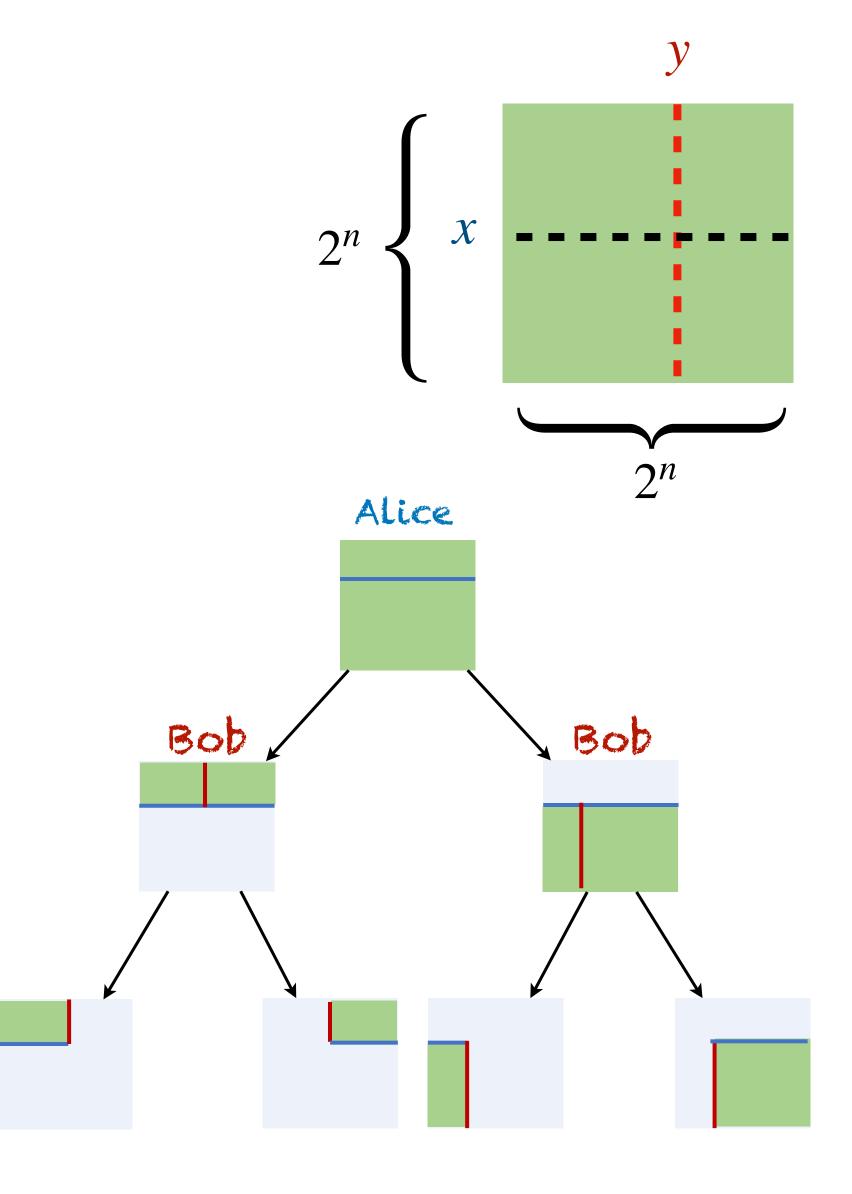
- ▶ Goal: communicate min # bits to find i s.t. $x_i \neq y_i$
- Before seeing input, decide communication protocol:
 - "strategy tree": who speaks when, what message means



Game: Find a Differing Bit



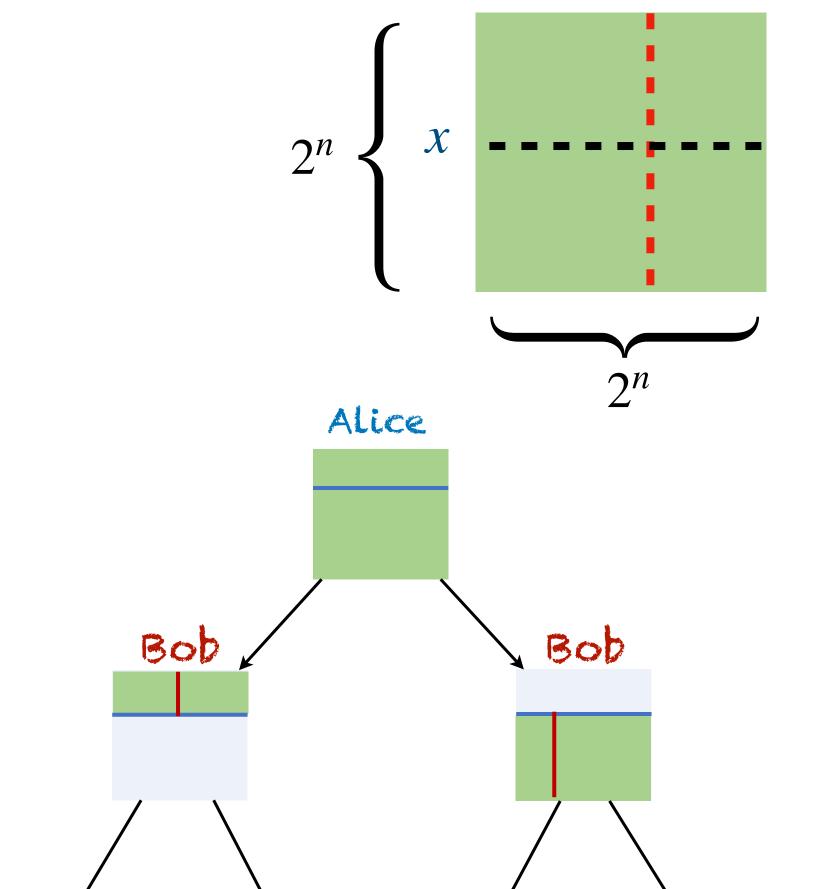
- ▶ Goal: communicate min # bits to find i s.t. $x_i \neq y_i$
- Before seeing input, decide communication protocol:
 - "strategy tree": who speaks when, what message means
- Worst-case: how many bits?

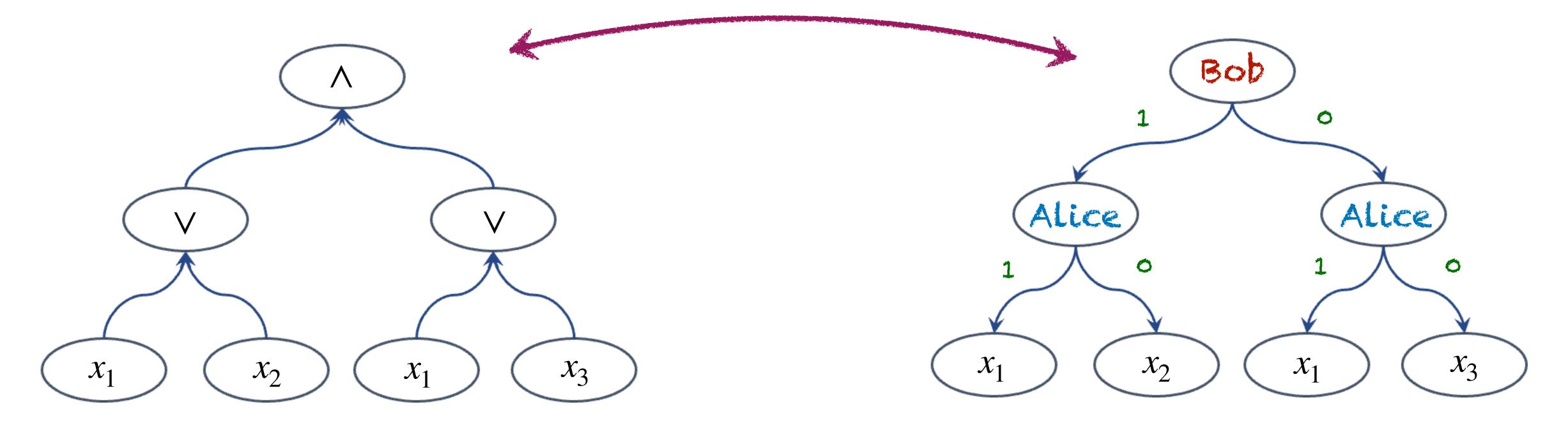


Karchmer-Wigderson game KW(f) [KW'90]

Given f $x \in \{0,1\}^n$ $x \in f^{-1}(1)$ Given f $y \in \{0,1\}^n$ $y \in f^{-1}(0)$

- Before seeing input, decide communication protocol:
 - "strategy tree": who speaks when, what message means
- Worst-case: how many bits?





 \exists depth-d formula computing $f\Leftrightarrow$ \exists depth-d communication protocol for $\mathrm{KW}(f)$

[KW'90]

Result is stronger: really the same object (even graph structure is preserved)

Monotone Karchmer-Wigderson game [kw/90]

 \triangleright KW(f): given $x \in f^{-1}(1), y \in f^{-1}(0)$ find i s.t. $x_i \neq y_i$

i.e.
$$x \ge y \Rightarrow f(x) \ge f(y)$$

For f monotone, mKW(f) harder problem: find i s.t. $x_i > y_i$

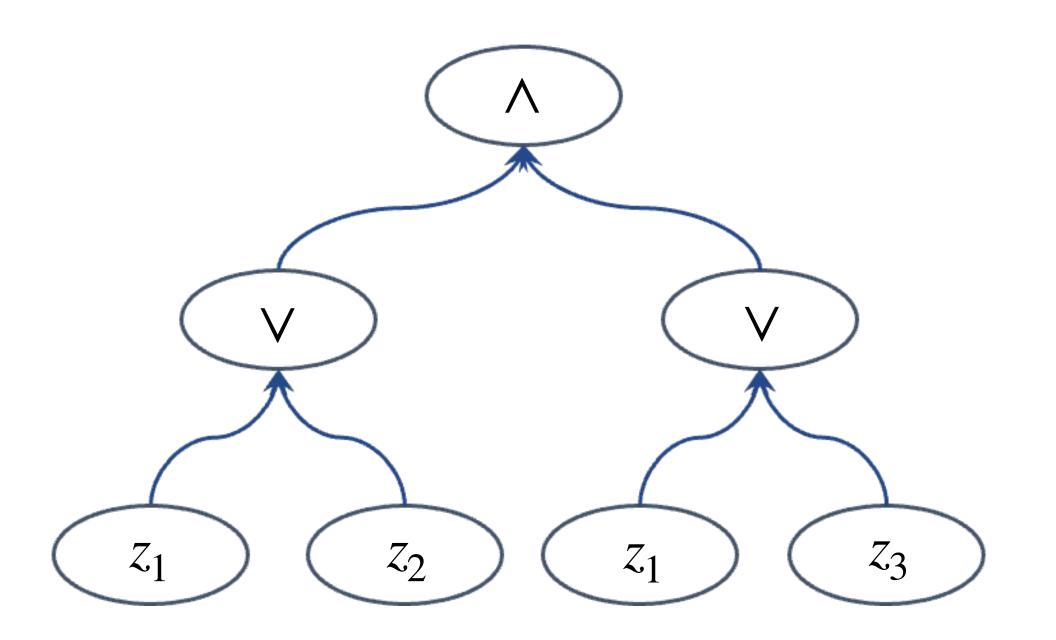
 \exists depth-d monotone formula computing $f\Leftrightarrow$ \exists depth-d communication protocol for mKW(f)

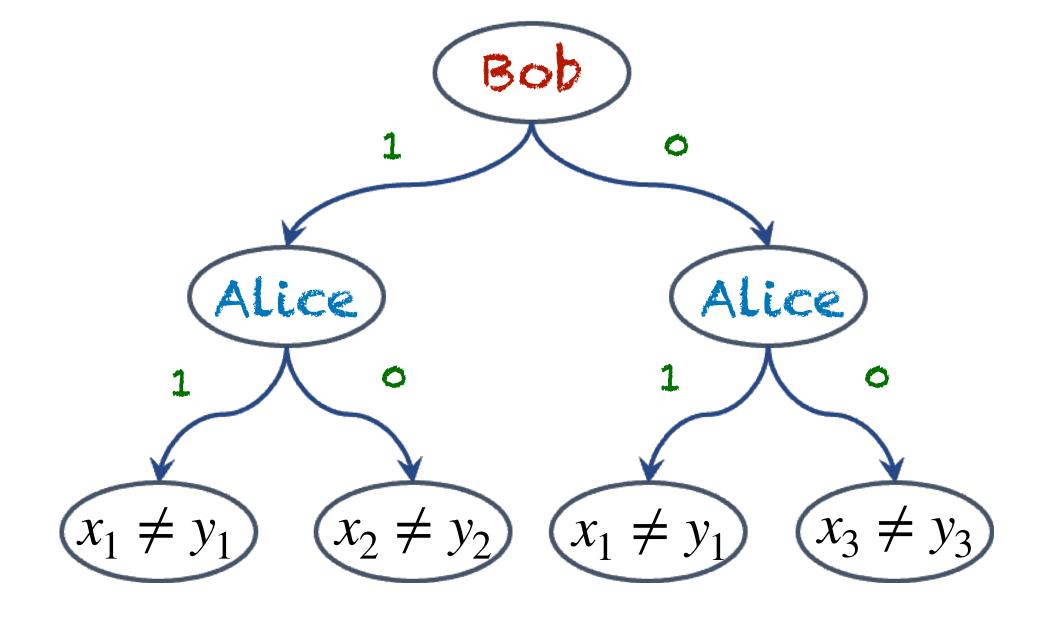
Example: f = majority

$$x = (1,1,0,1,0)$$

$$y = (0,1,1,0,0)$$

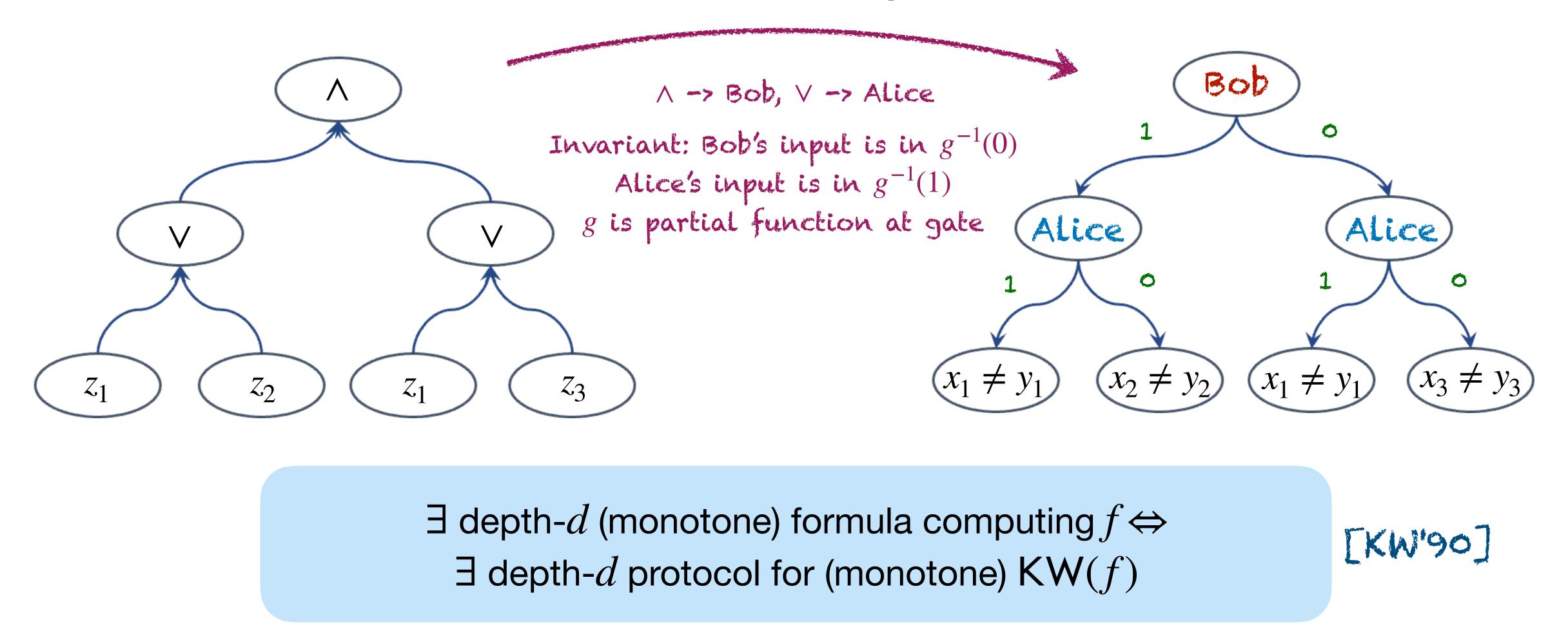
- \triangleright 1,3,4 valid answer for KW(f)
- \triangleright 1,4 valid for mKW(f) but not 3



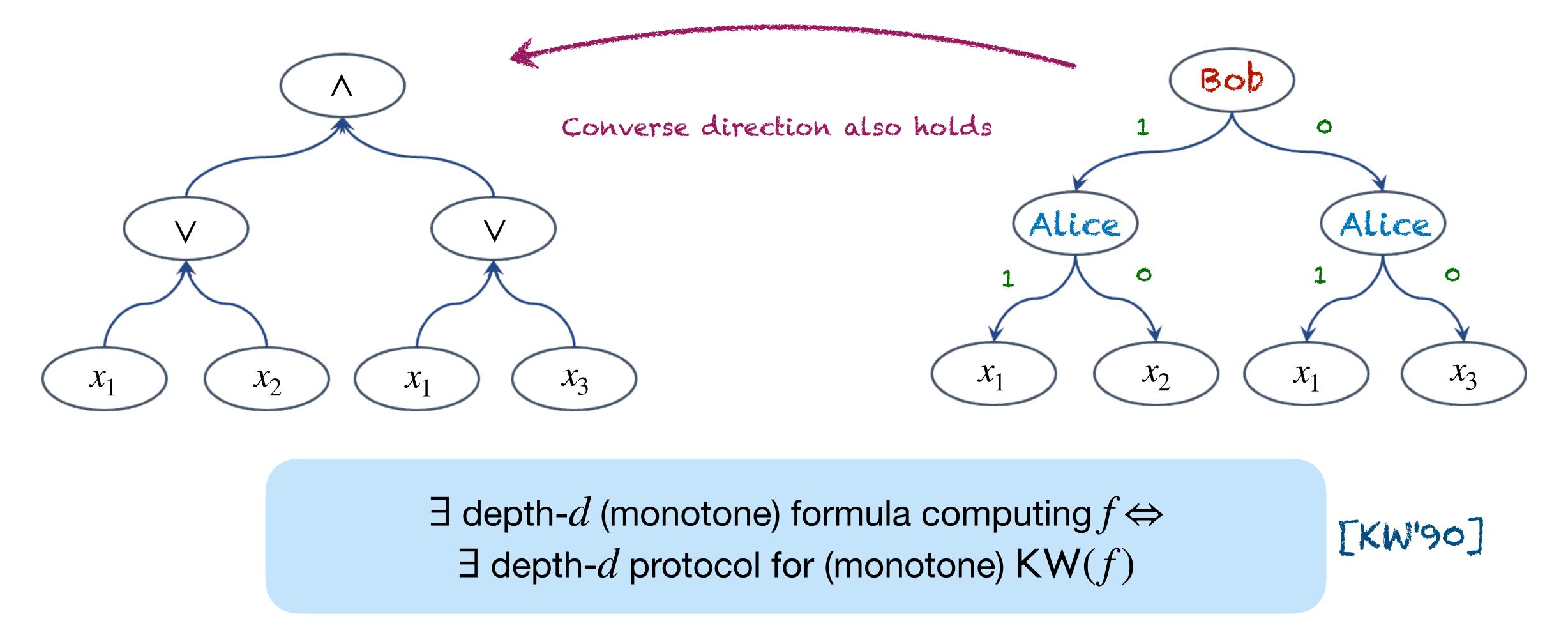


 \exists depth-d (monotone) formula computing $f\Leftrightarrow$ \exists depth-d protocol for (monotone) KW(f)

[KW'90]



Result is stronger: really the same object (even graph structure is preserved)



Result is stronger: really the same object (even graph structure is preserved)

Depth lower bound for st-connectivity [kw/90]

- ightharpoonup Framework used for $\Omega(\log^2 n)$ depth lower bound for st-connectivity
- Separates mon-NC¹ and mon-NC²
- \triangleright KW(f) is a total search problem
 - □ Total search problem $S \subseteq I \times O$ s.t. $\forall z \in I \exists o \in O : (z, o) \in S$
 - \square KW(f) \subseteq $(f^{-1}(1) \times f^{-1}(0)) \times [n]$

Raz-McKenzie: Lifting Theorem [RM '97]

- ▶ Idea: sometimes structured protocols (communicates bits of input) are best possible
 - \Box \exists special gadget $g: X \times Y \rightarrow \{0,1\}$
 - \square \forall total search problem $S \subseteq \{0,1\}^n \times O$

```
given x \in X^n, y \in Y^n find o \in O
s.t. (z, o) \in S for z_i = g(x_i, y_i)
```

If S \circ g requires structured protocol of depth $\geq c \Rightarrow$ any protocol for S \circ g has depth $\Omega(c)$

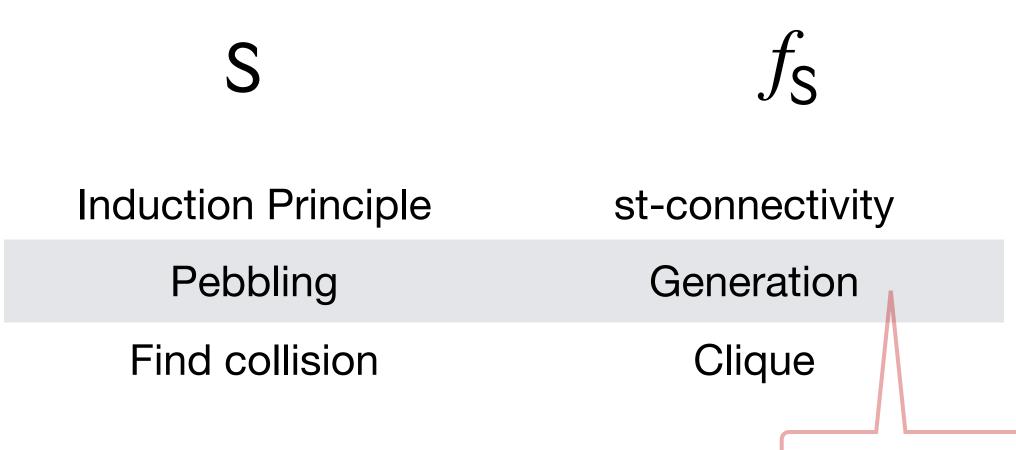
 \triangleright Structured protocol for S \circ g can only simulate decision trees for S

depth-d decision tree lower bound for S \Rightarrow depth- $\Omega(d\log n)$ communication protocol lower bound for S \circ g

Raz-McKenzie: Lifting Theorem [RM '97]

What does this have to do with circuits? mKW is universal for total search problems

depth-d decision tree lower bound for S \Rightarrow depth- $\Omega(d\log n)$ monotone circuit lower bound for $f_{\rm S}$



- reproved depth- $\Omega(\log^2 n)$ for st-connectivity
- separated mon-NC i and mon-NC $^{i+1}$
- ightharpoonup depth- $\Omega(k \log n)$ for k-clique for $k \leq n^{\epsilon}$

Depth lower bound for f in mP $\exp(\Omega(n^\epsilon))$

Part II: Recent developments

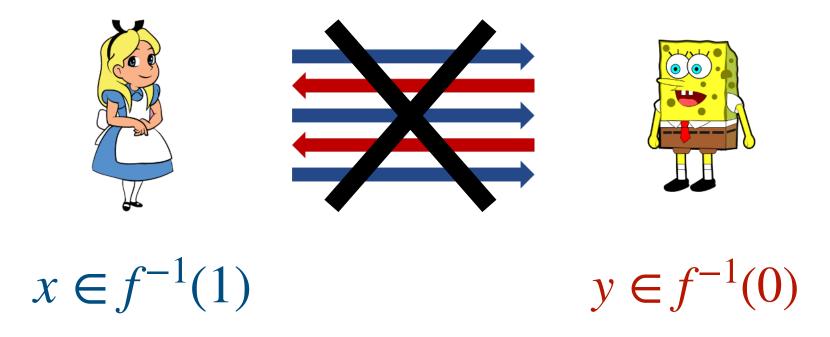
Monotone depth lower bounds

- \blacktriangleright For function in NP: $\Omega(n)$ [Pikassi, Robere '17]
 - \square $\Omega(n/\log n)$ [Göös, Pitassi '14], previously $\Omega(\sqrt{n})$ [Raz, Wigderson '90]
- lacktriangleright For function in mP: $\Omega(n/(\log^{O(1)}n))$ [dR, Meir, Nordström, Pitassi, Robere, Vinyals '20]
 - $\Omega(\sqrt{n})$ [Göös, Pitassi '14], previously $\Omega(n^{\epsilon})$ [Raz, McKenzie '97]
- Bringing Raz-McKenzie to light again [Göös, Pitassi, Watson '14]
- ightharpoonup Separated mon-AC i and mon-NC $^{i+1}$ [dR, Nordström, Vinyals '16]

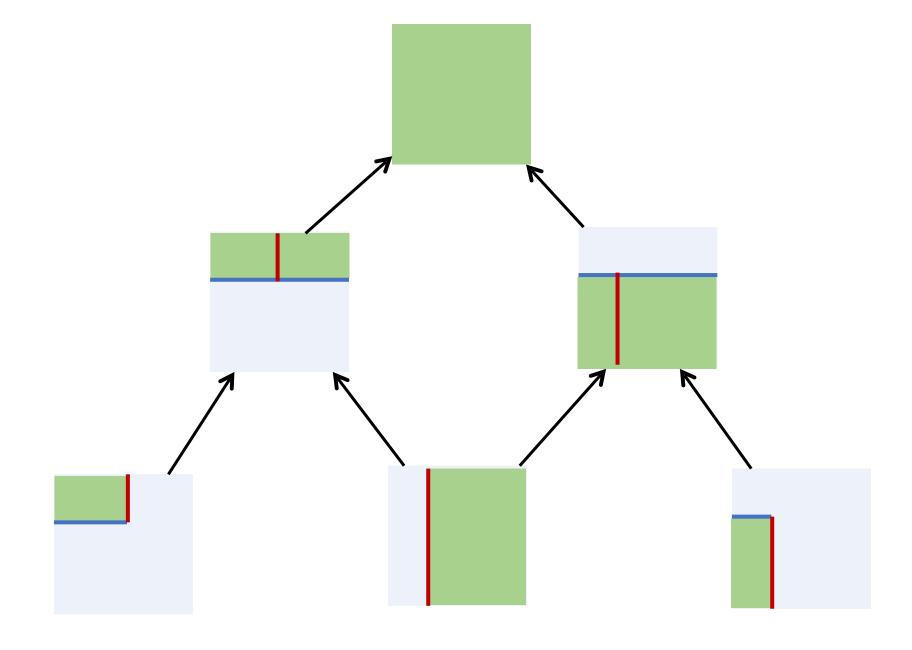
DAG-like communication complexity understanding circuit size

Karchmer-Wigderson for Circuits [Razborov '95, Sokolov '17]

ightharpoonup As before, given f



- \triangleright Goal: find i s.t. $x_i \neq y_i$
 - \square Monotone case: find i s.t. $x_i > y_i$
- DAG-like protocols: rectangle-DAGs



Circuits = rectangle-DAGs [Razborov '95, Sokolov '17]



 \exists size-s (monotone) circuit computing $f \Leftrightarrow \exists$ size-s rectangle-DAG for (monotone) KW(f)

Result is stronger: really the same object (even graph structure is preserved)

Raz-McKenzie: Lifting Theorem for Circuits

[Garg, Göös, Kamath, Sokolov '18]

Remember "Find Collision Problem"? # lines needed when allowed to forget

width-d decision DAG lower bound for S \Rightarrow size- $n^{\Omega(d)}$ monotone circuit lower bound for $f_{\rm S}$

Dompare with [Raz, McKenzie '18]

depth-d decision tree lower bound for $S \Rightarrow$ size- $n^{\Omega(d)}$ monotone *formula* lower bound for f_S

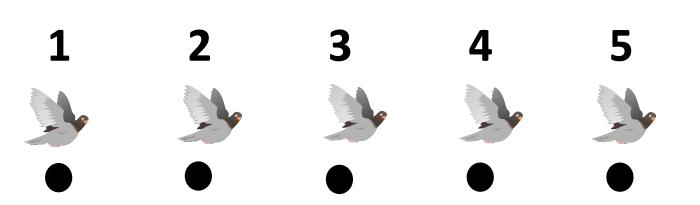
Results for monotone circuits

- $ilde{\mathbf{P}} \exp(\Omega(n^\epsilon))$ -size lower bound for f in NC^2 [Göös, Kamath, Robert, Sokolov '19]
 - Follows from lifting theorem [Garg, Göös, Kamath, Sokolov '18]
- $\triangleright n^{\Omega(k)}$ -size lower bound for k-clique for $k \le n^{1/2-o(1)}$
- $ightharpoonup \exp(\tilde{\Omega}(n^{1/3}))$ -size lower bound for f in P
 - Follows from improvement of lifting theorem Pitassi, Zhang, Jiapeng '21]
 - Use simplification from [dR, Fleming, Janett, Nordström, Pang '25]

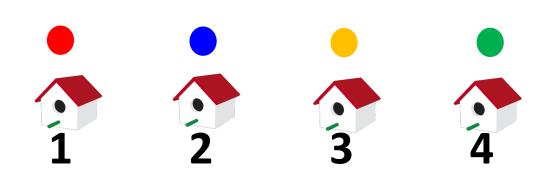
[dR, Vinyals 25]

for $S \subseteq \Sigma^n \times O$, $m \gg |\Sigma| \cdot d \log(n)$

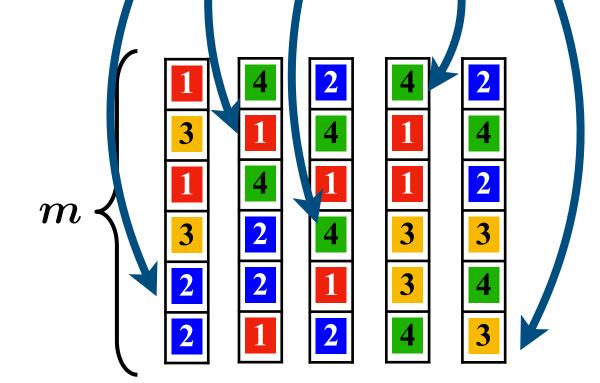
width-d decision DAG lower bound for $S\Rightarrow$ size- $m^{\Omega(d)}$ monotone circuit lower bound for $S \circ \operatorname{Ind}_m$

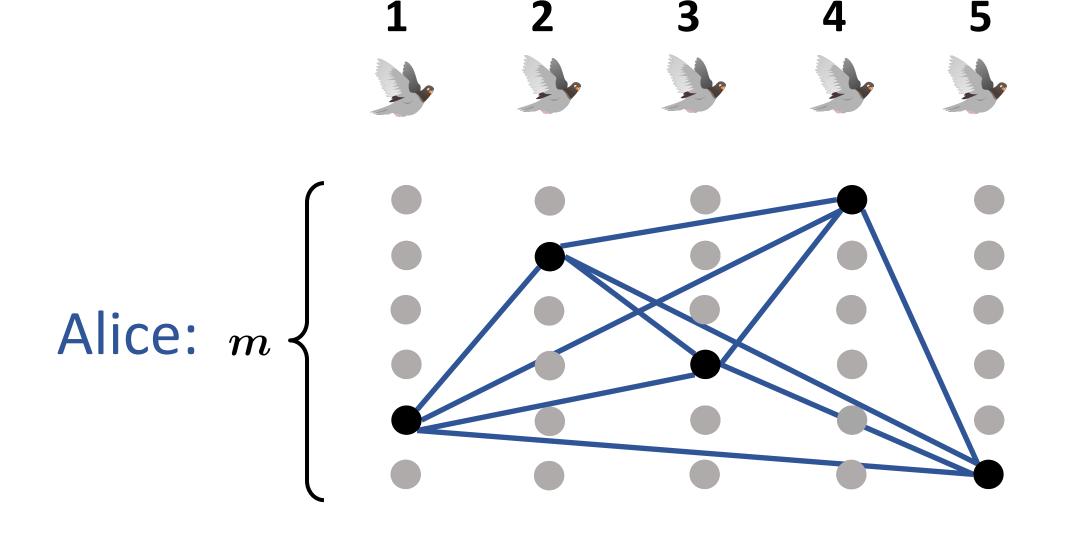


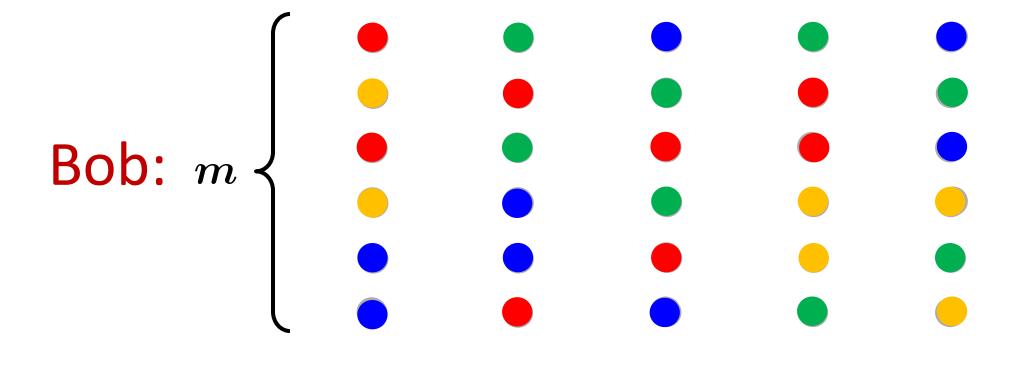
 $z_i \in [k-1], \ \forall i \in n$ find $i \neq j$ s.t. $z_i = z_j$

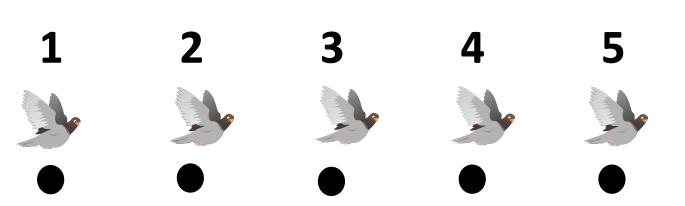


Bob: $y_1, y_2, y_3, y_4, y_5 \in [k-1]^m$

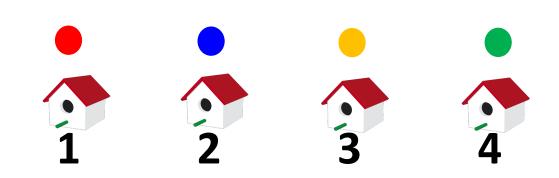


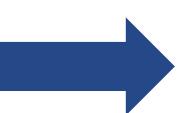




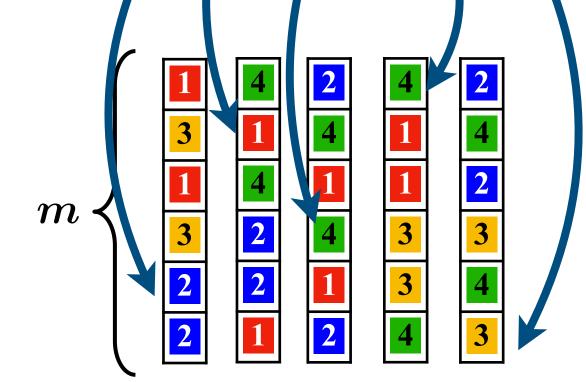


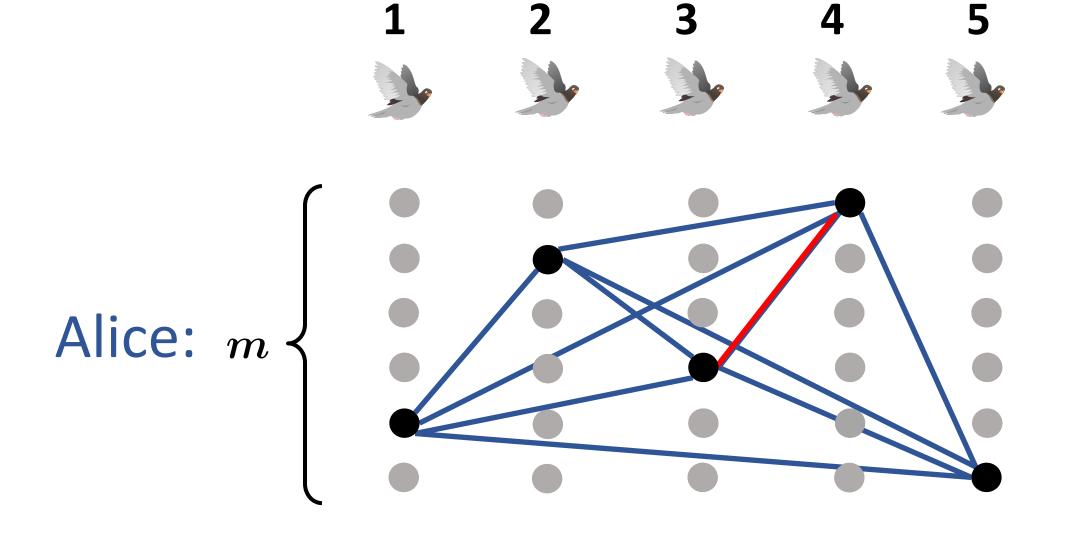
 $z_i \in [k-1], \ \forall i \in n$ find $i \neq j$ s.t. $z_i = z_j$

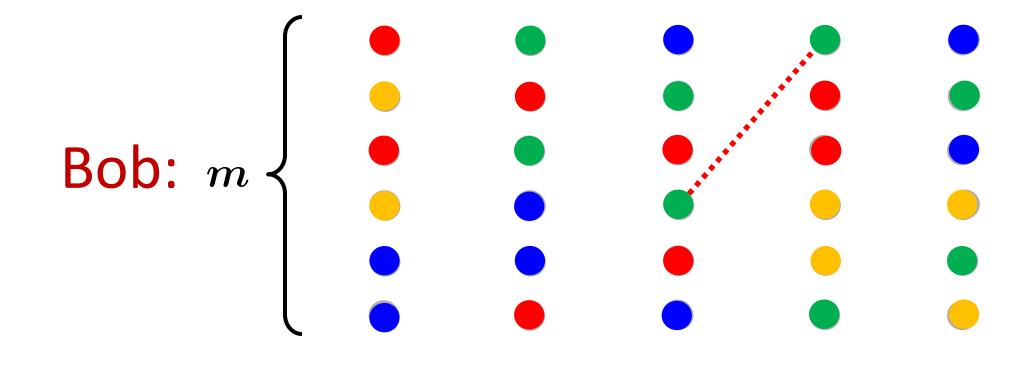


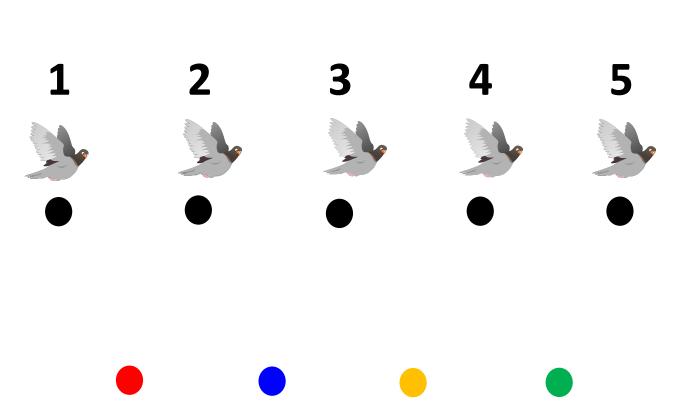


Bob: $y_1, y_2, y_3, y_4, y_5 \in [k-1]^n$

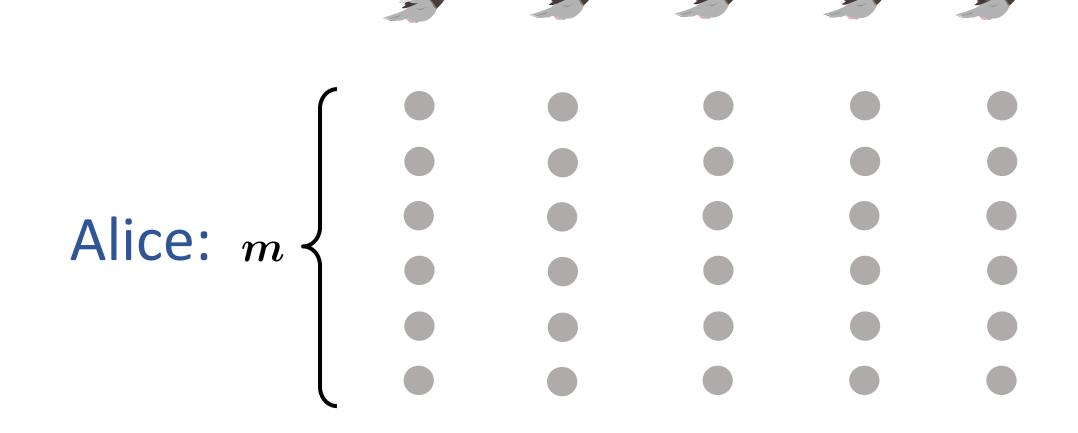


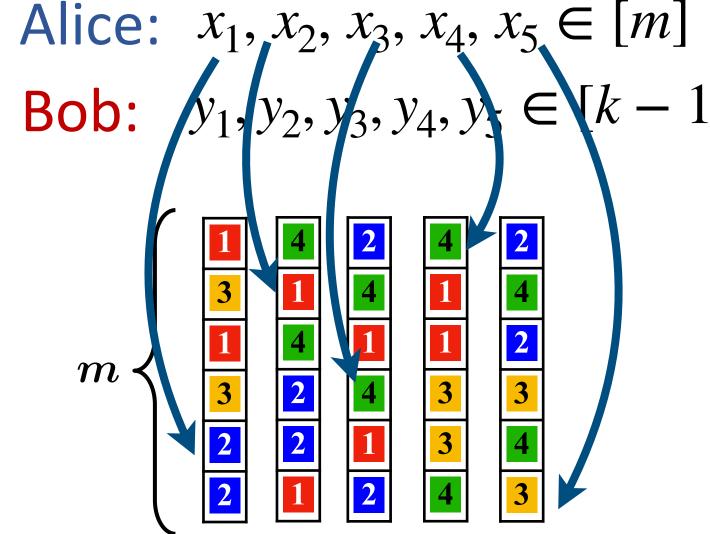


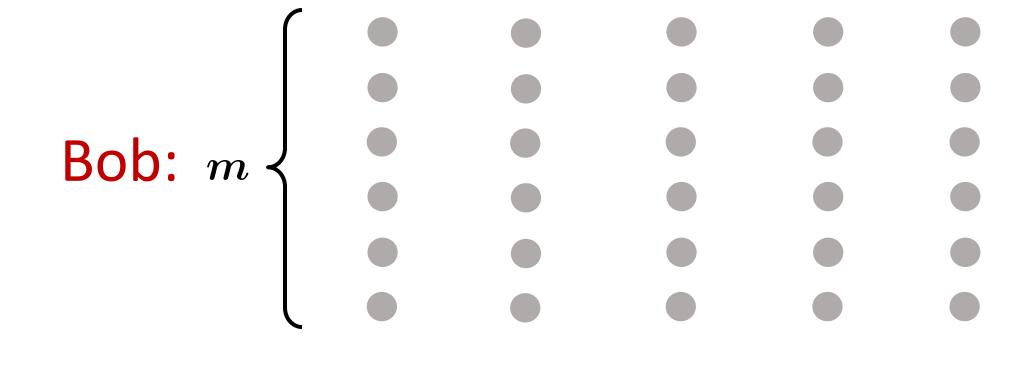


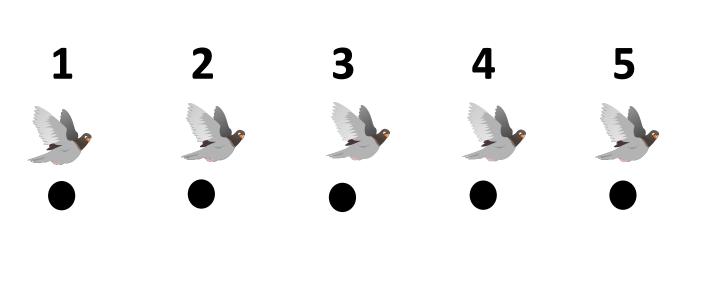


 $z_i \in [k-1], \ \forall i \in n$ find $i \neq j$ s.t. $z_i = z_j$

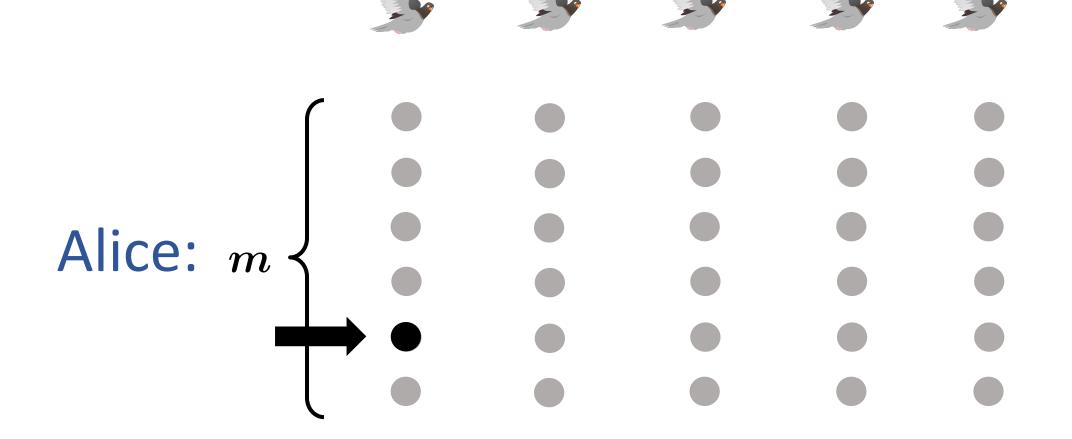






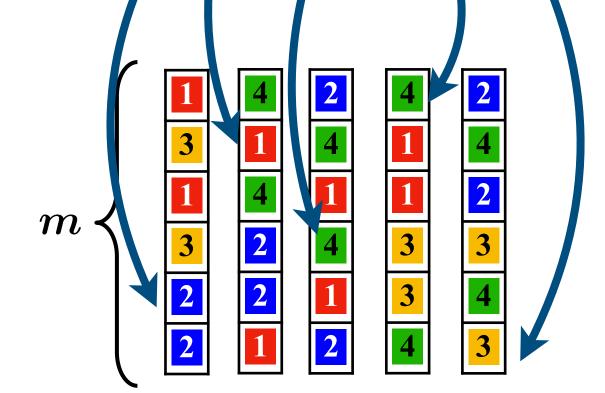


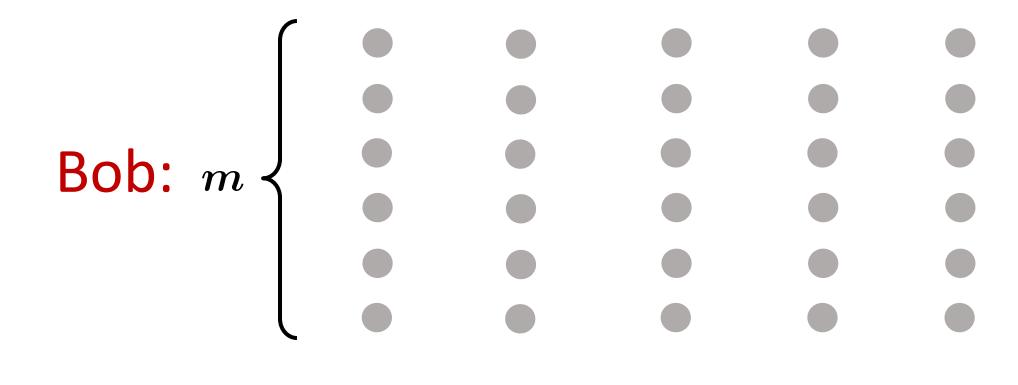
 $z_i \in [k-1], \ \forall i \in n$ find $i \neq j$ s.t. $z_i = z_i$

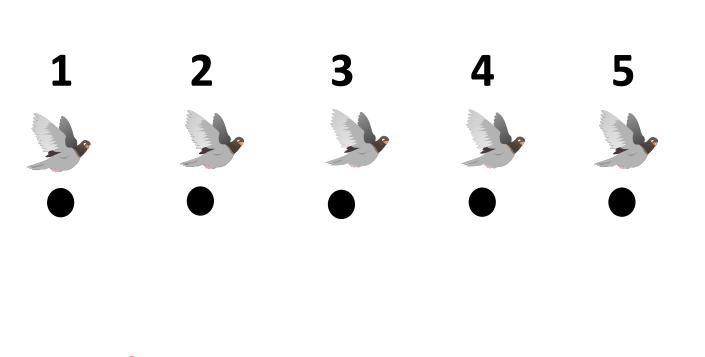




Bob: $y_1, y_2, y_3, y_4, y_5 \in [k-1]^n$

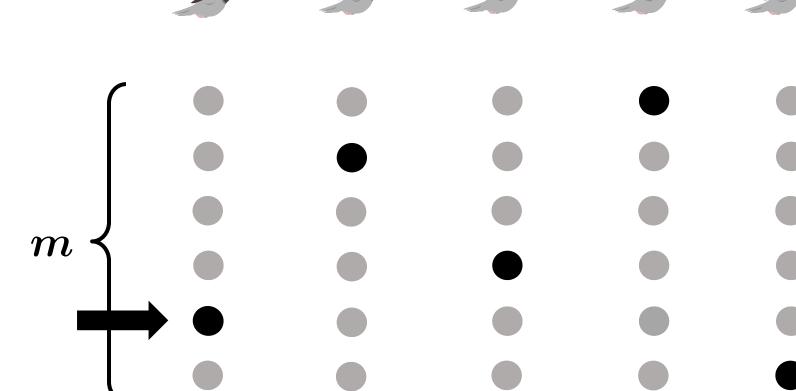


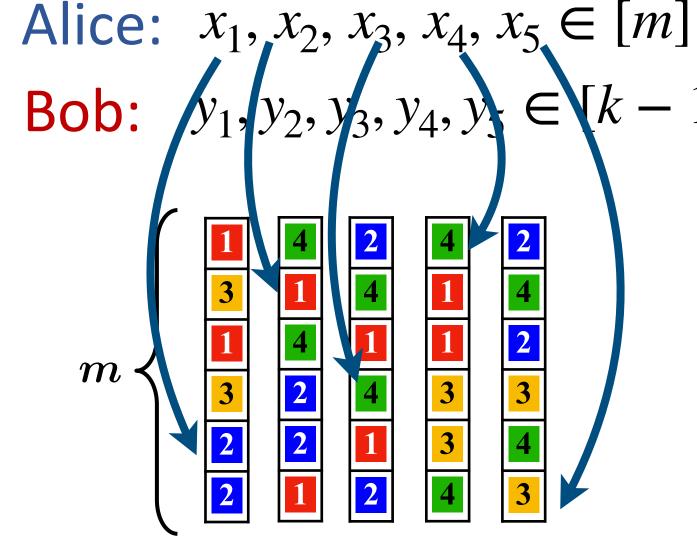


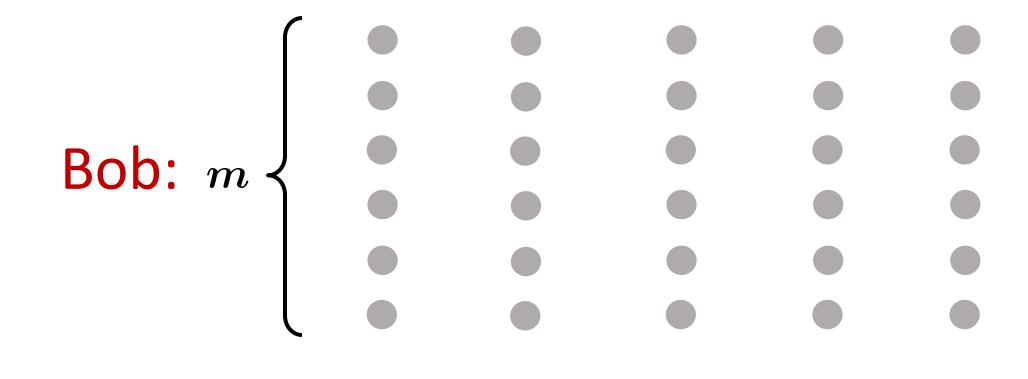


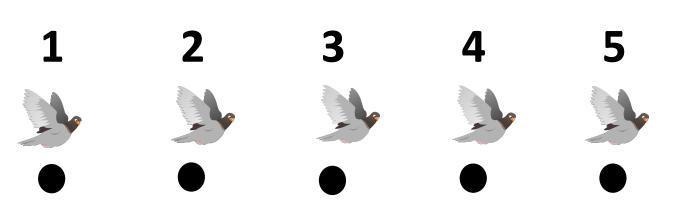
 $z_i \in [k-1], \ \forall i \in n$ find $i \neq j$ s.t. $z_i = z_i$

Alice: m

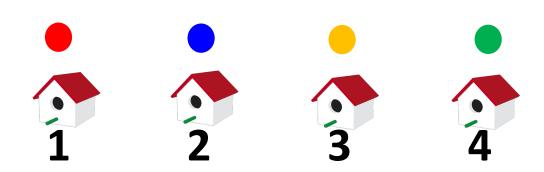




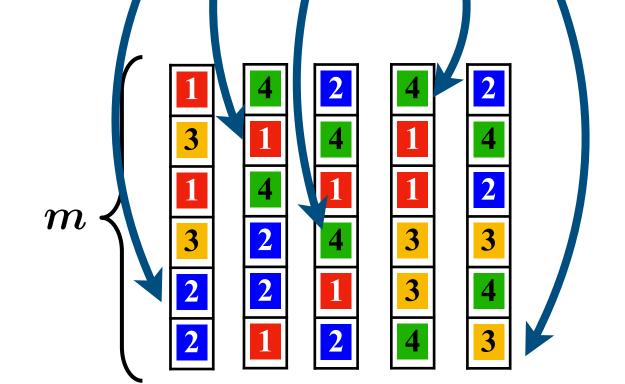


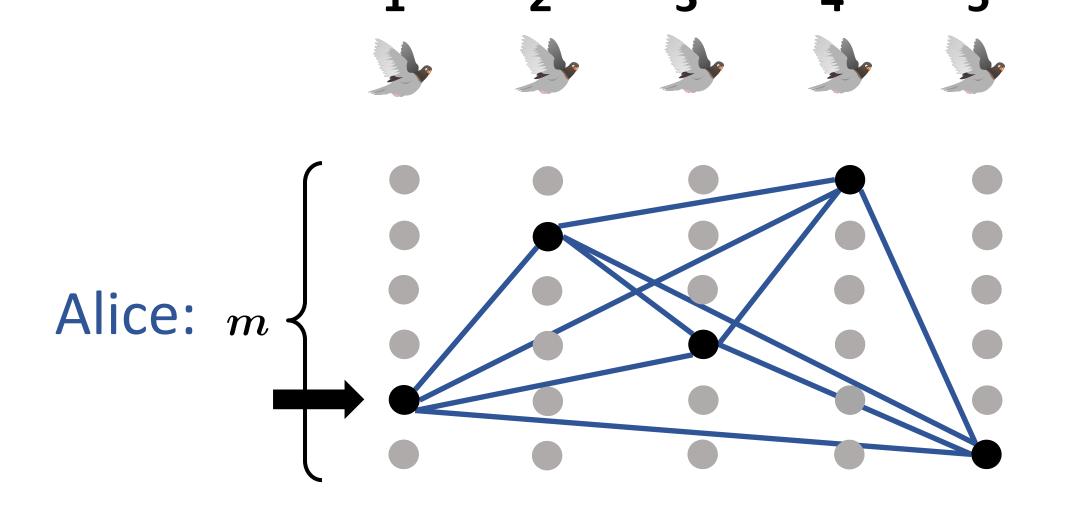


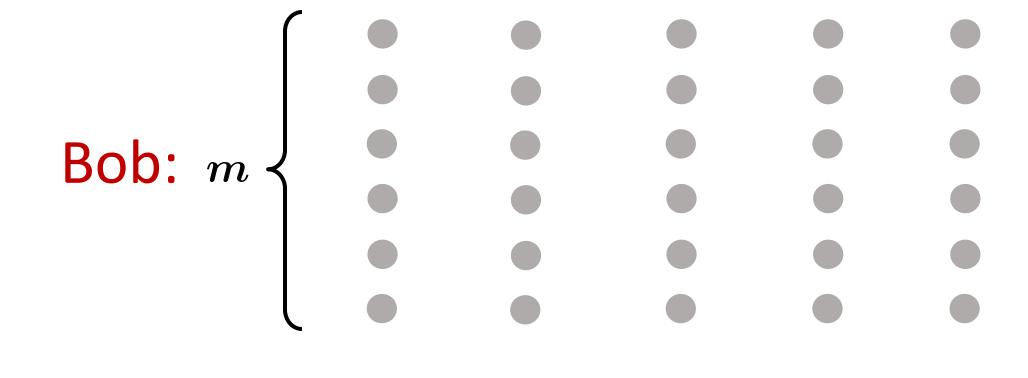
 $z_i \in [k-1], \ \forall i \in n$ find $i \neq j$ s.t. $z_i = z_j$

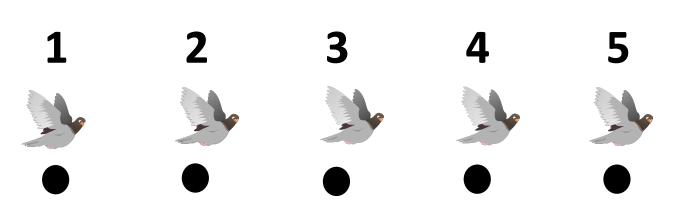


 $: y_1, y_2, y_3, y_4, y_5 \in [k-1]^m$

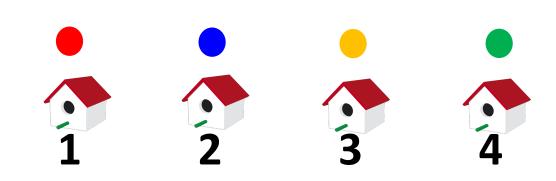






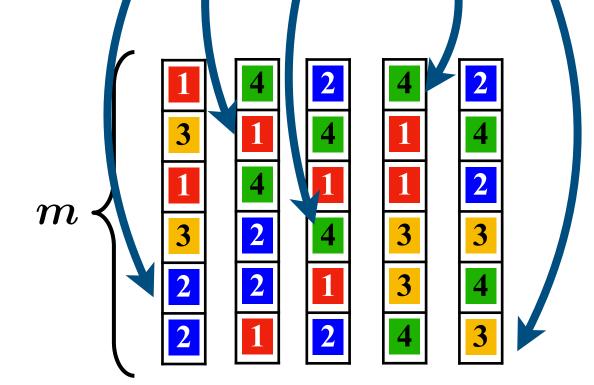


 $z_i \in [k-1], \ \forall i \in n$ find $i \neq j$ s.t. $z_i = z_j$

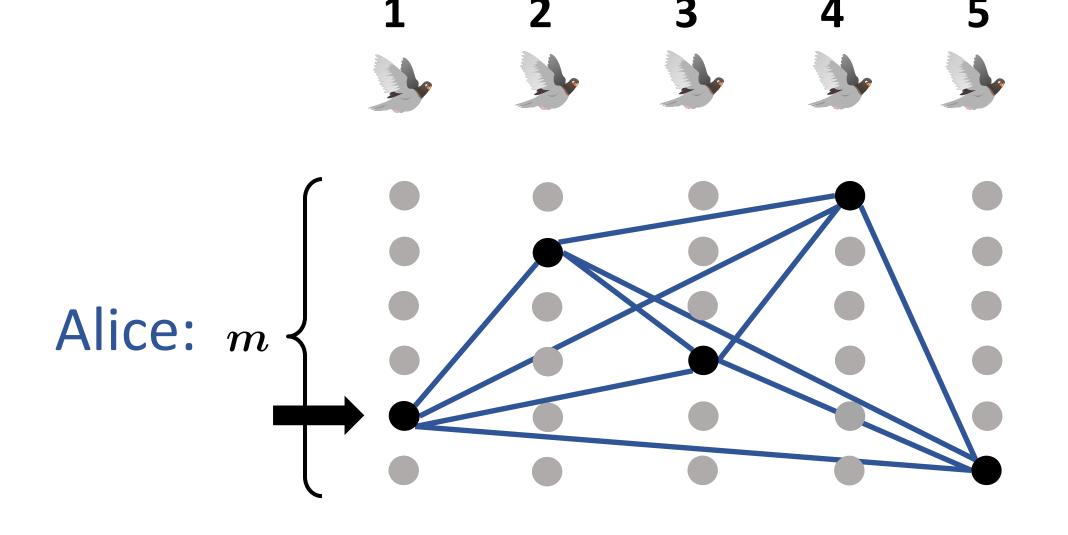


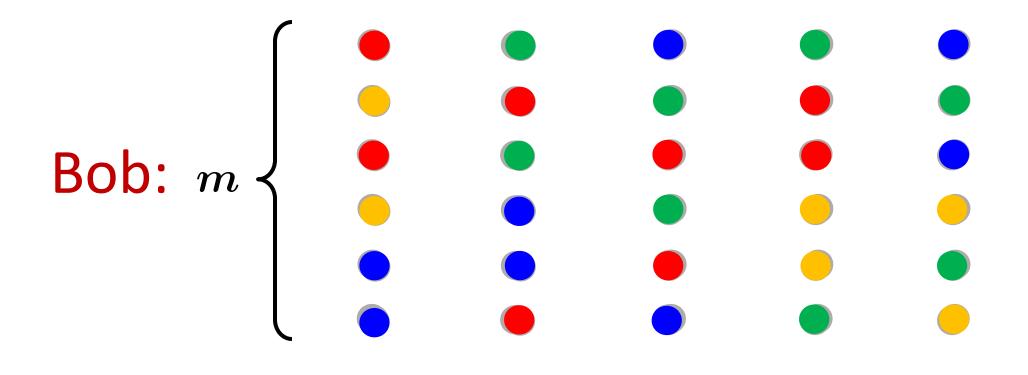
Alice: $x_1, x_2, x_3, x_4, x_5 \in [m]$

Bob: $y_1, y_2, y_3, y_4, y_5 \in [k-1]^m$

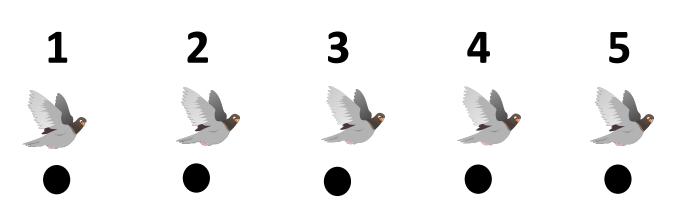


find $i \neq j$ s.t. x_i and x_j point to same number

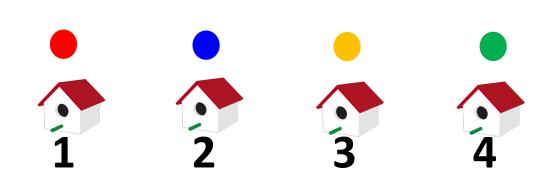


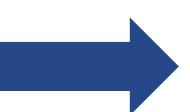


Includes all edges between vertices of \neq colours



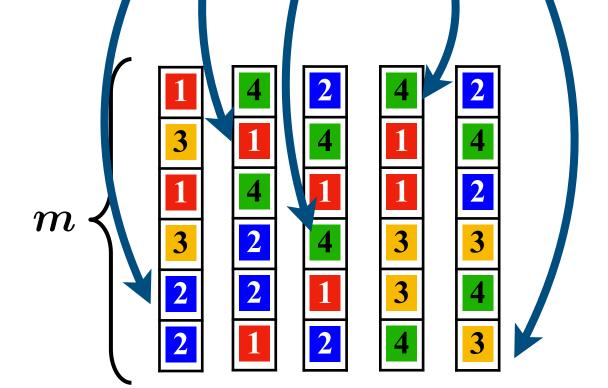
 $z_i \in [k-1], \ \forall i \in n$ find $i \neq j$ s.t. $z_i = z_j$



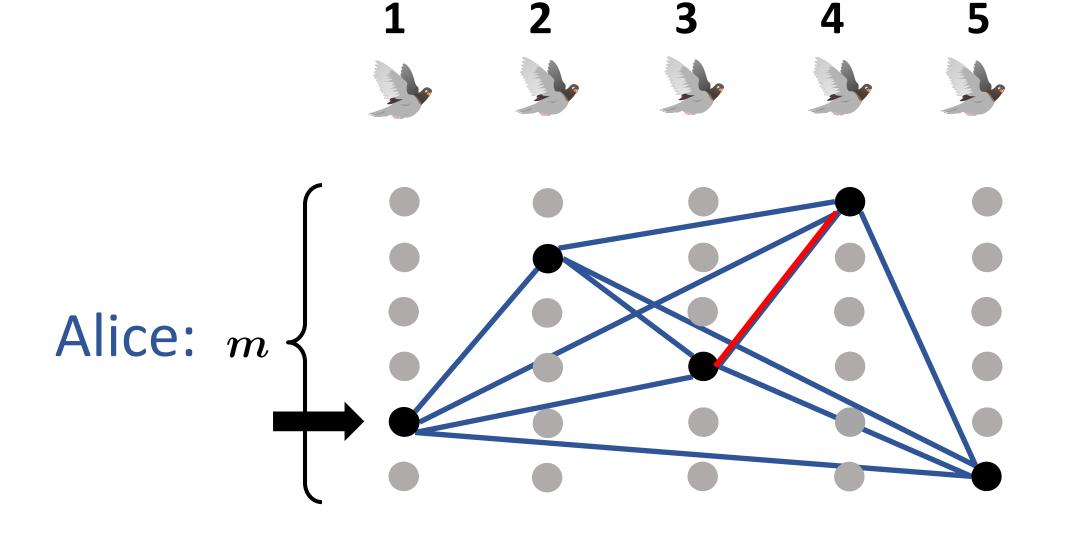


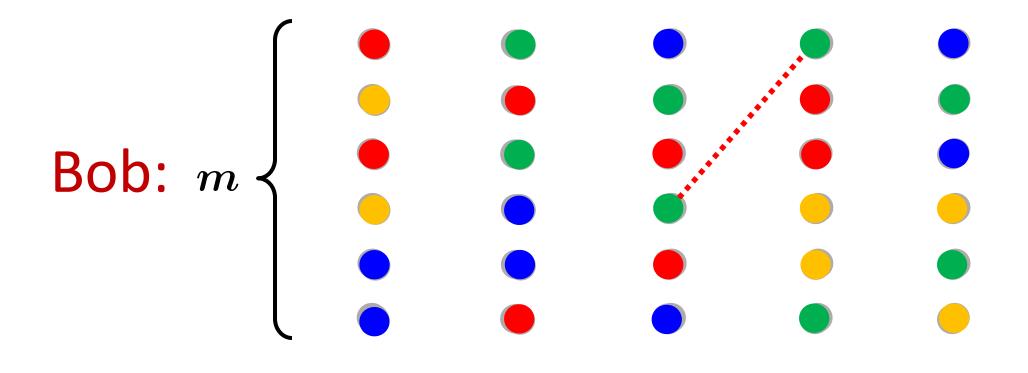
Alice: $x_1, x_2, x_3, x_4, x_5 \in [m]$

Bob: $y_1, y_2, y_3, y_4, y_5 \in [k-1]^m$

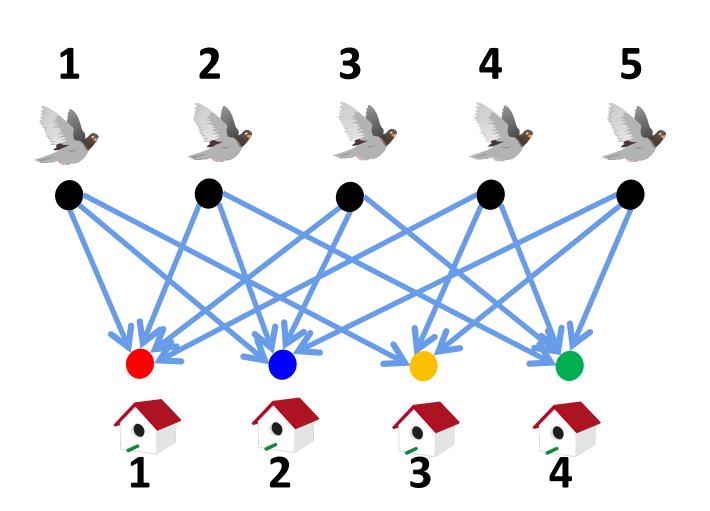


find $i \neq j$ s.t. x_i and x_j point to same number



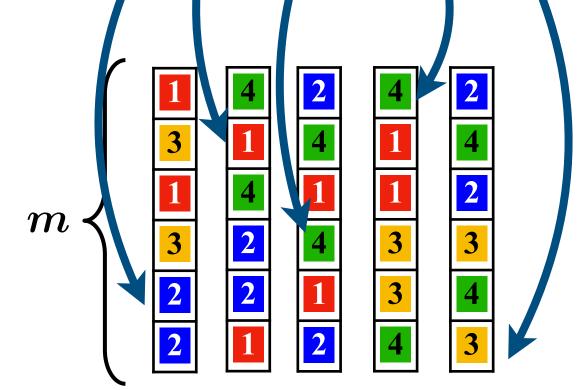


Includes all edges between vertices of \neq colours

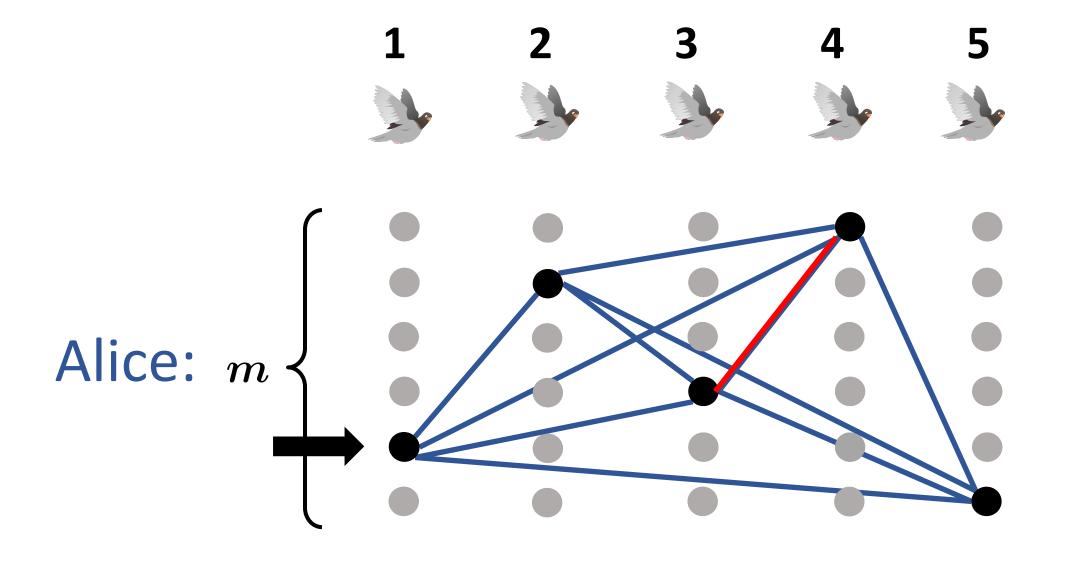


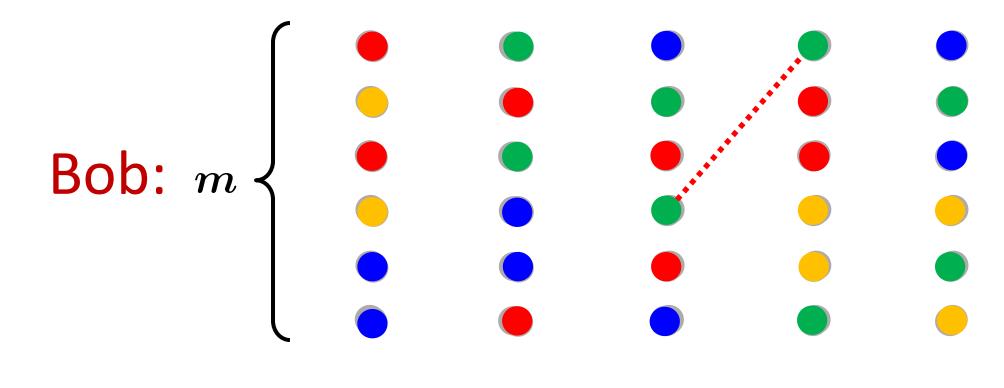
 $z_i \in [k-1], \ \forall i \in n$ find $i \neq j$ s.t. $z_i = z_j$

Bob: $y_1, y_2, y_3, y_4, y_5 \in [k-1]^m$



find $i \neq j$ s.t. x_i and x_j point to same number





Includes all edges between vertices of \neq colours

New results using approximation method

Improved on [Andreev '87, Harnik, Raz '00] $\exp(\tilde{\Omega}(n^{1/3}))$ -size lower bound for f in NP

- $ightharpoonup \exp(\tilde{\Omega}(n^{1/2}))$ lower bound for f in NP
- $^{\triangleright} n^{\Omega(k)}$ -size lower bound for k-clique for any $k \le n^{1/3 o(1)}$

[Błasiok, Meierhöfer '25]

[Cavalar, Kumar, Rossman 20]

 $ightharpoonup n^{\Omega(k)}$ -size lower bound for k-clique for any $k \le n^{1/2-o(1)}$

- Clique lower bounds not for clique-colouring
- Key tool: improved sunflower lemmas [Alweiss, Lovett, Wu, Zhang '19] and further improvements [Rao '19], [Bell, Chueluecha, Warnke '20]

Very recent result for monotone circuits

The difficulty in proving that a given boolean function has high complexity lies in the nature of our adversary: the circuit. Small circuits may work in a counterintuitive fashion, using deep, devious, and fiendishly clever ideas. How can one prove that there is no clever way to quickly compute the function? [Jukna '12]

- \triangleright How deep must we go? Are circuits of depth > n stronger?
- $\exists f \text{ computable by monotone circuits of size } s = n^{O(1)}$

[dR, Fleming, Janett, Nordström, Pang '25]

- \Box any monotone circuit of depth- n^2 requires size $s^{1.4}$
- $\exists f \text{ computable by size-} n^{O(\log n)} \text{ monotone circuits}$

[Göös, Maystre, Risse, Sokolov 25]

 \square any monotone circuit of depth- $n^{O(1)}$ requires size $\exp(\Omega(n^{\epsilon}))$

Some open problems

- Truly exponential size lower bound for f in NP (and in P)
 - □ Best known ~ $\exp(n^{1/2})$ and $\exp(n^{1/3})$, respectively
- Super-poly lower bound for f in AC^0 [Grigni, Sipser '92] (or even in NC^1)
 - Best known for f in NC^2 [GKRS '19] and for f in $AC^0[\oplus]$ [Cavalar, Oliveira '23]
- Exhibit function f that has poly-size monotone circuits s.t. any monotone circuit computing f in depth $\leq n$ requires super-poly size

Some more open problems

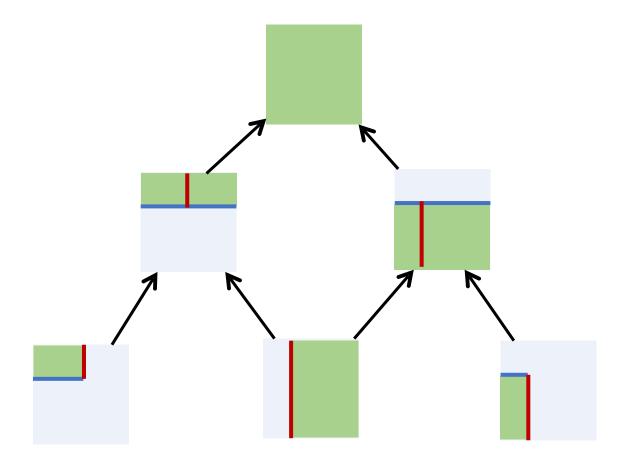
- Prove $\Omega(n^3)$ lower bound for st-connectivity [Jukna '12]
- Prove $n^{O(\log n)}$ upper bound for matching or prove better lower bound
 - Or explain why it's hard to prove exponential lower bounds
- Prove $n^{\Omega(k)}$ lower bound for k-clique for $k > \sqrt{n}$

Thoughts on methods

- Methods to obtain monotone circuit lower bounds
 - Approximation method
 - Bottle-neck counting
 - DAG-like lifting

Specialised per problem

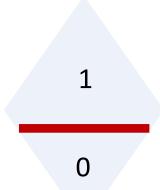
Generalised method



- ▶ Generalised method: black-box, main argument done once
- Specialised method: can perhaps get better bounds
- Common flavour: is lifting a special case of approximation method?
- Also common: use of sunflowers

Thoughts: challenges for slice functions

- ▶ All(?) size lower bounds for monotone circuits hold for monotone *real* circuits
 - Linear size monotone real formulas can compute slice functions
 - Current lower bound methods don't work for slice functions



1,1,...,1

- Monotone real circuits introduced to study cutting planes in proof complexity
 - Corresponding "communication" model: triangle-DAGs
 - Only way we know of proving lower bounds for cutting planes
 - Gives important insight on the methods

Some more open problems

- Prove lower bounds with limited number of negations $\gg \log \log n$ [Jukna '12]
 - \Box Methods work only to $\leq \log \log n$ [Amanoand, Maruoka '05]
 - $\log(n+1)$ negation gates are enough [Markov '57]
- ▶ Can all (monotone) circuit lower/upper bounds be seen naturally as communication lower/upper bounds for (m)KW? (Majority?) [Karchmer '89]
- Understand power and limitations of lifting? [Cavalar, Oliveira '23]
- General TFNP framework: other lifting theorems & communication l.b.?