The Complexity of Learning LTL, CTL and ATL Formulas

Benjamin Bordais¹, Daniel Neider¹ and Rajarshi Roy²

¹TU Dortmund, RC-Trust ²University of Oxford

STACS 2025

Context

General setting

- Derive formal specification from observations of system behavior
- Formal specifications: written as temporal logic formulas
- Synthesis: in a passive learning context
- Goal: find tractable cases for the learning decision problem

2 Summary of our results

③ NP-hardness proofs with limited use of binary operators

4 Conclusion

- Evaluated on infinite words where letters are sets of propositions
- Propositional logic + Temporal operators (X, F, G, U, etc.)

- Evaluated on infinite words where letters are sets of propositions
- Propositional logic + Temporal operators (X, F, G, U, etc.)
- Temporal operators:

- Evaluated on infinite words where letters are sets of propositions
- Propositional logic + Temporal operators (X, F, G, U, etc.)
- Temporal operators:

- Evaluated on infinite words where letters are sets of propositions
- Propositional logic + Temporal operators (X, F, G, U, etc.)
- Temporal operators:

- Evaluated on infinite words where letters are sets of propositions
- Propositional logic + Temporal operators (X, F, G, U, etc.)
- Temporal operators:

Basic characteristics LTL

- Evaluated on infinite words where letters are sets of propositions
- Propositional logic + Temporal operators
- Set of all operators $\mathsf{Op}:=\{\neg,\wedge,\vee,\Rightarrow,\ldots,\mathsf{X},\mathsf{F},\mathsf{G},\mathsf{U},\ldots\}$

Basic characteristics LTL

- Evaluated on infinite words where letters are sets of propositions
- Propositional logic + Temporal operators
- Set of all operators $\mathsf{Op}:=\{\neg,\wedge,\vee,\Rightarrow,\ldots,\mathsf{X},\mathsf{F},\mathsf{G},\mathsf{U},\ldots\}$

Set of propositions

 $\mathsf{Prop} := \{\mathsf{Ylw}, \mathsf{Red}, \mathsf{Blue}, \mathsf{Grn}, \mathsf{Prpl}, \mathsf{Blck}\}$

Basic characteristics LTL

- Evaluated on infinite words where letters are sets of propositions
- Propositional logic + Temporal operators
- Set of all operators $\mathsf{Op}:=\{\neg,\wedge,\vee,\Rightarrow,\ldots,\mathsf{X},\mathsf{F},\mathsf{G},\mathsf{U},\ldots\}$

Set of propositions

 $\mathsf{Prop} := \{ \mathsf{Ylw}, \mathsf{Red}, \mathsf{Blue}, \mathsf{Grn}, \mathsf{Prpl}, \mathsf{Blck} \}$

An infinite word

 $\pi = \{\mathsf{Ylw}, \mathsf{Grn}, \mathsf{Red}\} \cdot \{\mathsf{Blue}, \mathsf{Red}\} \cdot \{\mathsf{Red}\} \cdot \{\mathsf{Blck}, \mathsf{Red}\} \cdot \{\mathsf{Blue}, \mathsf{Prpl}\} \cdots$

Basic characteristics LTL

- Evaluated on infinite words where letters are sets of propositions
- Propositional logic + Temporal operators
- Set of all operators $\mathsf{Op}:=\{\neg,\wedge,\vee,\Rightarrow,\ldots,\mathsf{X},\mathsf{F},\mathsf{G},\mathsf{U},\ldots\}$

Set of propositions

 $\mathsf{Prop} := \{\mathsf{Ylw}, \mathsf{Red}, \mathsf{Blue}, \mathsf{Grn}, \mathsf{Prpl}, \mathsf{Blck}\}$

An infinite word

 $\pi = \{\mathsf{Ylw}, \mathsf{Grn}, \mathsf{Red}\} \cdot \{\mathsf{Blue}, \mathsf{Red}\} \cdot \{\mathsf{Red}\} \cdot \{\mathsf{Blck}, \mathsf{Red}\} \cdot \{\mathsf{Blue}, \mathsf{Prpl}\} \cdots$

Example of evaluation

Bordais, Neider, Roy

For $\varphi_1 := \mathsf{F} (\mathsf{Blck} \land \mathsf{X} | \mathsf{Blue})$:

For
$$\varphi_2 := \operatorname{\mathsf{Red}} \mathsf{U} \operatorname{\mathsf{Prpl}}$$
:

 $\pi \models \varphi_2$

$$\pi \models \varphi$$

Complexity of Passive Learning

Basic characteristics CTL (Clarke, Emerson, 1981)

- Evaluated on labeled graphs (non-terminating)
- Propositional logic + Quantification temporal operators

Basic characteristics CTL (Clarke, Emerson, 1981)

- Evaluated on labeled graphs (non-terminating)
- Propositional logic + Quantification temporal operators
- Quantification:

• (Existential) $\exists \psi$:

Basic characteristics CTL (Clarke, Emerson, 1981)

- Evaluated on labeled graphs (non-terminating)
- Propositional logic + Quantification temporal operators
- Quantification:

Basic characteristics CTL

- Evaluated on labeled graphs (non-terminating)
- Propositional logic + Quantification temporal operators

Basic characteristics CTL

- Evaluated on labeled graphs (non-terminating)
- Propositional logic + Quantification temporal operators

Basic characteristics CTL

- Evaluated on labeled graphs (non-terminating)
- Propositional logic + Quantification temporal operators

Example • For $\varphi_1 := \exists \mathbf{X}$ Blue: • $q_1 \models \varphi_1$ • $q_2, q_3, q_4 \not\models \varphi_1$ • For $\varphi_2 := \forall \mathbf{F}$ Prpl: • $q_1, q_2, q_3, q_4 \models \varphi_2$

Alternating-time Temporal Logic (ATL)

Basic characteristics ATL_k (Alur, Henzinger, Kupferman, 2002)

- Generalizes CTL
- Evaluated on labeled k-player games
- Propositional logic + (Strategic quantification) temporal operators

Logic $\mathcal{L} \in \{LTL, CTL, ATL_k \mid k \in \mathbb{N}_1\}$, subset of operators $O \subseteq Op$

Logic $\mathcal{L} \in \{LTL, CTL, ATL_k \mid k \in \mathbb{N}_1\}$, subset of operators $O \subseteq Op$

The decision problem $PvLn_{\mathcal{L}}(O)$:

• Input: \mathcal{L} -instances in \mathcal{S}_+ and \mathcal{S}_- , and a bound B (in **unary**)

Logic $\mathcal{L} \in \{LTL, CTL, ATL_k \mid k \in \mathbb{N}_1\}$, subset of operators $O \subseteq Op$

The decision problem $PvLn_{\mathcal{L}}(O)$:

• Input: \mathcal{L} -instances in \mathcal{S}_+ and \mathcal{S}_- , and a bound B (in **unary**)

Logic $\mathcal{L} \in \{LTL, CTL, ATL_k \mid k \in \mathbb{N}_1\}$, subset of operators $O \subseteq Op$

The decision problem $PvLn_{\mathcal{L}}(O)$:

- Input: \mathcal{L} -instances in \mathcal{S}_+ and \mathcal{S}_- , and a bound B (in **unary**)
- Output: Yes iff there exists an $\mathcal{L}(\mathsf{O})$ -formula φ of size at most B:
 - φ accepts all positive instances in \mathcal{S}_+
 - φ rejects all negative instances in \mathcal{S}_-

Logic $\mathcal{L} \in \{LTL, CTL, ATL_k \mid k \in \mathbb{N}_1\}$, subset of operators $O \subseteq Op$

The decision problem $PvLn_{\mathcal{L}}(O)$:

- Input: \mathcal{L} -instances in \mathcal{S}_+ and \mathcal{S}_- , and a bound B (in **unary**)
- Output: Yes iff there exists an $\mathcal{L}(0)$ -formula φ of size at most B:
 - φ accepts all positive instances in \mathcal{S}_+
 - φ rejects all negative instances in \mathcal{S}_-

Logic $\mathcal{L} \in \{LTL, CTL, ATL_k \mid k \in \mathbb{N}_1\}$, subset of operators $O \subseteq Op$

The decision problem $PvLn_{\mathcal{L}}(O)$:

- Input: \mathcal{L} -instances in \mathcal{S}_+ and \mathcal{S}_- , and a bound B (in **unary**)
- Output: Yes iff there exists an $\mathcal{L}(\mathsf{O})$ -formula φ of size at most B:
 - φ accepts all positive instances in \mathcal{S}_+
 - φ rejects all negative instances in \mathcal{S}_-

Bound in unary

- Why a bound? Prevents overfitting
- Why in unary? Generating a formula requires explicitly writing it

Goal

Study the complexity and look for tractable cases

The decision problem $PvLn_{\mathcal{L}}(O)$ where:

- $\mathcal{L} \in \{\mathsf{LTL},\mathsf{CTL},\mathsf{ATL}_k \mid k \in \mathbb{N}_1\}$ ranges over temporal logics
- $\bullet~O\subseteq Op$ ranges over subsets of operators

Goal

Study the complexity and look for tractable cases

The decision problem $PvLn_{\mathcal{L}}(O)$ where:

- $\mathcal{L} \in \{\mathsf{LTL},\mathsf{CTL},\mathsf{ATL}_k \mid k \in \mathbb{N}_1\}$ ranges over temporal logics
- $O \subseteq Op$ ranges over subsets of operators

Central related work¹

The complexity of LTL learning with finite words

Bordais, Neider, Roy

¹Learning temporal formulas from examples is hard, C. Mascle, N. Fijalkow, G. Lagarde, arXiv 2023.

③ NP-hardness proofs with limited use of binary operators

Two straightforward observations

Problems in NP

For all $\mathcal{L} \in \{LTL, CTL, ATL\}$ and subsets of operators $O \subseteq Op$:

the problem $PvLn_{\mathcal{L}}(O)$ is in NP (use guess-and-check sub-routine)

Two straightforward observations

Problems in NP

For all $\mathcal{L} \in \{LTL, CTL, ATL\}$ and subsets of operators $O \subseteq Op$:

the problem $PvLn_{\mathcal{L}}(O)$ is in NP (use guess-and-check sub-routine)

Comparing LTL and CTL learning, CTL and ATL learning

For all subsets of operators $O \subseteq Op$:

• $PvLn_{LTL}(O) \preceq_{LogSpace} PvLn_{CTL}(O)$

Two straightforward observations

Problems in NP

For all $\mathcal{L} \in \{LTL, CTL, ATL\}$ and subsets of operators $O \subseteq Op$:

the problem $PvLn_{\mathcal{L}}(O)$ is in NP (use guess-and-check sub-routine)

Comparing LTL and CTL learning, CTL and ATL learning

For all subsets of operators $O \subseteq Op$:

- $PvLn_{LTL}(O) \preceq_{LogSpace} PvLn_{CTL}(O)$
- For all $k \in \mathbb{N}_1$, $\mathsf{PvLn}_{\mathsf{CTL}}(\mathsf{O}) \preceq_{\mathsf{LogSpace}} \mathsf{PvLn}_{\mathsf{ATL}_k}(\mathsf{O})$

Set of all binary operators

 $\mathsf{BinOp}:=\{\wedge,\vee,\Rightarrow,\ldots,\mathsf{U},\mathsf{R},\ldots\}$

Set of all binary operators

 $\mathsf{BinOp}:=\{\wedge,\vee,\Rightarrow,\ldots,\mathsf{U},\mathsf{R},\ldots\}$

Theorem

```
For all O \subseteq Op \text{ s.t. } O \cap BinOp \neq \emptyset:
```

The decision problem $PvLn_{LTL}(O)$ is NP-hard

Set of all binary operators

 $\mathsf{BinOp}:=\{\wedge,\vee,\Rightarrow,\ldots,\mathsf{U},\mathsf{R},\ldots\}$

Theorem

For all $O \subseteq Op \text{ s.t. } O \cap BinOp \neq \emptyset$:

The decision problem $PvLn_{LTL}(O)$ is NP-hard

Corollary

For all $O \subseteq Op \text{ s.t. } O \cap BinOp \neq \emptyset$ and $\mathcal{L} \in \{LTL, CTL, ATL_k \mid k \in \mathbb{N}_1\}$:

The decision problem $PvLn_{\mathcal{L}}(O)$ is NP-hard

Set of all binary operators

 $\mathsf{BinOp}:=\{\wedge,\vee,\Rightarrow,\ldots,\mathsf{U},\mathsf{R},\ldots\}$

Corollary

For all $O \subseteq Op \text{ s.t. } O \cap BinOp \neq \emptyset$ and $\mathcal{L} \in \{LTL, CTL, ATL_k \mid k \in \mathbb{N}_1\}$:

The decision problem $PvLn_{\mathcal{L}}(O)$ is NP-hard

Set of all binary operators

 $\mathsf{BinOp}:=\{\wedge,\vee,\Rightarrow,\ldots,\mathsf{U},\mathsf{R},\ldots\}$

Corollary

For all $O \subseteq Op \text{ s.t. } O \cap BinOp \neq \emptyset$ and $\mathcal{L} \in \{LTL, CTL, ATL_k \mid k \in \mathbb{N}_1\}$:

The decision problem $PvLn_{\mathcal{L}}(O)$ is NP-hard

First summary

	Unlimited use of binary operators	
LTL		
CTL	ND	
AIL_2	NP-c	
ATL		

Bordais, Neider, Roy

Add restrictions on the use of binary operators

For $n \in \mathbb{N}$, we define the decision problem $PvLn_{\mathcal{L}}(O, n)$:

Like $PvLn_{\mathcal{L}}(O)$, but we consider \mathcal{L} -formulas with at most n occurrences of propositional binary operators in O

Add restrictions on the use of binary operators

For $n \in \mathbb{N}$, we define the decision problem $PvLn_{\mathcal{L}}(O, n)$:

Like $PvLn_{\mathcal{L}}(O)$, but we consider \mathcal{L} -formulas with at most n occurrences of propositional binary operators in O

Full summary

	Unlimited use	Limited use of binary operators			Limited use of binary operators	
	of binary	With X	With X Without X			
	operators	VV 1011 2X	With \mathbf{F}, \mathbf{G}	Only \mathbf{F} or only \mathbf{G}		
LTL		L				
CTL		NP-c NL-c		NL-c		
ATL_2	NP-c	NP-c P-c NP-c		P-c		
ATL						

Add restrictions on the use of binary operators

For $n \in \mathbb{N}$, we define the decision problem $PvLn_{\mathcal{L}}(O, n)$:

Like $PvLn_{\mathcal{L}}(O)$, but we consider \mathcal{L} -formulas with at most n occurrences of propositional binary operators in O

Full summary

	Unlimited use	Limited use of binary operators			Limited use of binary operators	
	of binary	With X	Without \mathbf{X}			
	operators	VV 1011 2X	With \mathbf{F}, \mathbf{G}	Only \mathbf{F} or only \mathbf{G}		
LTL		L				
CTL	a	NP-c		NL-c		
ATL_2	NP-c	Ν	IP-c	P-c		
ATL			NP-	с		

Add restrictions on the use of binary operators

For $n \in \mathbb{N}$, we define the decision problem $PvLn_{\mathcal{L}}(O, n)$:

Like $PvLn_{\mathcal{L}}(O)$, but we consider \mathcal{L} -formulas with at most n occurrences of propositional binary operators in O

Full summary

	Unlimited use	Limited use of binary operators			Limited use of binary operators	
	of binary	With \mathbf{X}	With X Without X			
	operators		With \mathbf{F}, \mathbf{G}	Only \mathbf{F} or only \mathbf{G}		
LTL		L				
CTL		NP-c		NL-c		
ATL_2	NP-c	NP-c P-c				
ATL		NP-c				

3 NP-hardness proofs with limited use of binary operators

Hitting set problem

- Input: $l \in \mathbb{N}_1$, subsets $C = C_1, \ldots, C_n \subseteq [1, \ldots, l]$, $k \leq l$
- Output: Yes iff there is $H \subseteq [1, \ldots, l]$ such that:
 - $|H| \leq k$
 - for all $1 \leq i \leq n$, we have $H \cap C_i \neq \emptyset$

Hitting set problem

- Input: $l \in \mathbb{N}_1$, subsets $C = C_1, \ldots, C_n \subseteq [1, \ldots, l]$, $k \leq l$
- Output: Yes iff there is $H \subseteq [1, \ldots, l]$ such that:
 - $|H| \leq k$
 - for all $1 \leq i \leq n$, we have $H \cap C_i \neq \emptyset$

Pick a logic \mathcal{L} **and set of operators** $O \subseteq Op$

Hitting set problem

- Input: $l \in \mathbb{N}_1$, subsets $C = C_1, \ldots, C_n \subseteq [1, \ldots, l]$, $k \leq l$
- Output: Yes iff there is $H \subseteq [1, \ldots, l]$ such that:
 - $|H| \leq k$
 - for all $1 \leq i \leq n$, we have $H \cap C_i \neq \emptyset$

Pick a logic \mathcal{L} and set of operators $O \subseteq Op$

From an instance (l, C, k) of the hitting set problem:

1 Define a type of $\mathcal{L}(\mathsf{O})$ -formulas $\phi^l(H)$, for $H \subseteq [1, \ldots, l]$

Hitting set problem

- Input: $l \in \mathbb{N}_1$, subsets $C = C_1, \ldots, C_n \subseteq [1, \ldots, l]$, $k \leq l$
- Output: Yes iff there is $H \subseteq [1, \ldots, l]$ such that:
 - $|H| \leq k$
 - for all $1 \leq i \leq n$, we have $H \cap C_i \neq \emptyset$

Pick a logic \mathcal{L} **and set of operators** $O \subseteq Op$

- **①** Define a type of $\mathcal{L}(\mathsf{O})$ -formulas $\phi^l(H)$, for $H \subseteq [1, \ldots, l]$
- 2 Define the bound $B \in \mathbb{N}$ and (+, -) instances that a formula separates iff it is equal to some $\phi^{l}(H)$, for $H \subseteq [1, \ldots, l]$

Hitting set problem

- Input: $l \in \mathbb{N}_1$, subsets $C = C_1, \ldots, C_n \subseteq [1, \ldots, l]$, $k \leq l$
- Output: Yes iff there is $H \subseteq [1, \ldots, l]$ such that:
 - $|H| \le k$
 - for all $1 \leq i \leq n$, we have $H \cap C_i \neq \emptyset$

Pick a logic \mathcal{L} **and set of operators** $O \subseteq Op$

- **1** Define a type of $\mathcal{L}(\mathsf{O})$ -formulas $\phi^l(H)$, for $H \subseteq [1, \ldots, l]$
- 2 Define the bound $B \in \mathbb{N}$ and (+, -) instances that a formula separates iff it is equal to some $\phi^{l}(H)$, for $H \subseteq [1, \ldots, l]$
- **③** Define a -instance that $\phi^l(H)$ accepts iff $|H| \ge k+1$

Hitting set problem

- Input: $l \in \mathbb{N}_1$, subsets $C = C_1, \ldots, C_n \subseteq [1, \ldots, l]$, $k \leq l$
- Output: Yes iff there is $H \subseteq [1, \ldots, l]$ such that:
 - $|H| \leq k$
 - for all $1 \leq i \leq n$, we have $H \cap C_i \neq \emptyset$

Pick a logic \mathcal{L} **and set of operators** $O \subseteq Op$

- $\textbf{O} \ \ \text{Define a type of } \mathcal{L}(\mathsf{O})\text{-formulas } \phi^l(H) \text{, for } H \subseteq [1,\ldots,l]$
- 2 Define the bound $B \in \mathbb{N}$ and (+, -) instances that a formula separates iff it is equal to some $\phi^l(H)$, for $H \subseteq [1, \ldots, l]$
- **3** Define a -instance that $\phi^l(H)$ accepts iff $|H| \ge k+1$
- For $i \leq n$, define a +instance that $\phi^l(H)$ accepts iff $H \cap C_i \neq \emptyset$

Hitting set problem

- Input: $l \in \mathbb{N}_1$, subsets $C = C_1, \ldots, C_n \subseteq [1, \ldots, l]$, $k \leq l$
- Output: Yes iff there is $H \subseteq [1, \ldots, l]$ such that:
 - $|H| \leq k$
 - for all $1 \leq i \leq n$, we have $H \cap C_i \neq \emptyset$

Pick a logic \mathcal{L} and set of operators $O \subseteq Op$

- **1** Define a type of $\mathcal{L}(\mathsf{O})$ -formulas $\phi^l(H)$, for $H \subseteq [1, \ldots, l]$
- **2** Define the bound $B \in \mathbb{N}$ and (+, -) instances that a formula separates iff it is equal to some $\phi^l(H)$, for $H \subseteq [1, \ldots, l]$
- 3 Define a -instance that $\phi^l(H)$ accepts iff $|H| \ge k+1$
- For $i \leq n$, define a +instance that $\phi^l(H)$ accepts iff $H \cap C_i \neq \emptyset$

Application: when $\mathcal{L} = CTL$, $X \in O$

Step 1: type of formulas

For $l \in \mathbb{N}_1$ and $H \subseteq [1, \ldots, l]$:

$$\phi^{l}(H) := \mathcal{R}_{1} \mathsf{X} \ \mathcal{R}_{2} \mathsf{X} \ \dots \ \mathcal{R}_{l} \mathsf{X} \ p$$

with $\mathcal{R}_i \in \{\exists, \forall\}$ and $\mathcal{R}_i = \exists$ iff $i \in H$.

Application: when $\mathcal{L} = CTL$, $X \in O$

Step 3: bounding the size of H = bounding the number of \exists

• When l = 4 and k = 1, define a -instance

• We have $K_{4,2\leq} \models \phi^4(H)$ iff $|H| \ge 2$

Application: when $\mathcal{L} = CTL$, $X \in O$

Step 4: *H* intersects the set $C_i = an \exists$ index is in C_i

• When l = 4 and $C_i = \{2, 3\} \subseteq [1, \dots, 4]$, define a +instance

• We have
$$K_{4,C_i} \models \phi^4(H)$$
 iff $H \cap C_i = \emptyset$

Summary of our results

Summary

	Unlimited use	Limited use of binary operators			Limited use of binary operators	
	of binary	With X Without X		With X	Thout \mathbf{X}	
	operators	VV 1011 A	With \mathbf{F}, \mathbf{G}	Only \mathbf{F} or only \mathbf{G}		
LTL		L				
CTL		NP-c		NL-c		
ATL_2	NP-c	Ν	IP-c	P-c		
ATL		NP-c				

2 Summary of our results

3 NP-hardness proofs with limited use of binary operators

The passive learning of temporal logic formulas

- NP-hard as soon as there is an unlimited use of binary operators
- By limiting the use of binary operators, we recover some tractable cases

The passive learning of temporal logic formulas

- NP-hard as soon as there is an unlimited use of binary operators
- By limiting the use of binary operators, we recover some tractable cases

Various questions could be explored

- Allow a restricted use of binary temporal operators
- Look for tractable approximation algorithms
- What if the bound is written in binary?