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Context

General setting

Derive formal specification from observations of system behavior

Formal specifications: written as temporal logic formulas

Synthesis: in a passive learning context

Goal: find tractable cases for the learning decision problem

Bordais, Neider, Roy Complexity of Passive Learning STACS 2025 2 / 16



1 Temporal logic and passive learning

2 Summary of our results

3 NP-hardness proofs with limited use of binary operators

4 Conclusion



Linear Temporal Logic (LTL)

Basic characteristics LTL (Pnueli, 1977)

Evaluated on infinite words where letters are sets of propositions

Propositional logic + Temporal operators (X, F, G, U, etc.)

Temporal operators:

(NeXt) X φ:

(Future) F φ:

(Globally) G φ:

(Until) φ1 U φ2:

Set of propositions

Prop := {Ylw,Red,Blue,Grn,Prpl,Blck}

An infinite word

π = {Ylw,Grn,Red} · {Blue,Red} · {Red} · {Blck,Red} · {Blue,Prpl} · · ·

Example of evaluation

For φ1 := F (Blck ∧ X Blue):

π |= φ1

For φ2 := Red U Prpl:

π |= φ2
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Computation Tree Logic (CTL)

Basic characteristics CTL (Clarke, Emerson, 1981)

Evaluated on labeled graphs (non-terminating)

Propositional logic + Quantification temporal operators

Quantification:

(Existential) ∃ ψ:

(Universal) ∀ ψ:

q1

{Red}

q2 {Ylw, Blue}

q3{Grn, Red}

q4

{Prpl}

Example

For φ1 := ∃ X Blue:

q1 |= φ1

q2, q3, q4 ̸|= φ1

For φ2 := ∀ F Prpl:

q1, q2, q3, q4 |= φ2
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Alternating-time Temporal Logic (ATL)

Basic characteristics ATLk (Alur, Henzinger, Kupferman, 2002)

Generalizes CTL

Evaluated on labeled k-player games

Propositional logic + (Strategic quantification) temporal operators
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Passive learning problem
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Logic L ∈ {LTL,CTL,ATLk | k ∈ N1}, subset of operators O ⊆ Op

The decision problem PvLnL(O):

Input: L-instances in S+ and S−, and a bound B (in unary)

Output: Yes iff there exists an L(O)-formula φ of size at most B:

φ accepts all positive instances in S+

φ rejects all negative instances in S−
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Logic L ∈ {LTL,CTL,ATLk | k ∈ N1}, subset of operators O ⊆ Op

The decision problem PvLnL(O):

Input: L-instances in S+ and S−, and a bound B (in unary)

Output: Yes iff there exists an L(O)-formula φ of size at most B:

φ accepts all positive instances in S+

φ rejects all negative instances in S−

Bound in unary

Why a bound? Prevents overfitting

Why in unary? Generating a formula requires explicitly writing it



Goal

Study the complexity and look for tractable cases

The decision problem PvLnL(O) where:

L ∈ {LTL,CTL,ATLk | k ∈ N1} ranges over temporal logics

O ⊆ Op ranges over subsets of operators

Central related work1

The complexity of LTL learning with finite words
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L ∈ {LTL,CTL,ATLk | k ∈ N1} ranges over temporal logics
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Central related work1

The complexity of LTL learning with finite words

1Learning temporal formulas from examples is hard, C. Mascle, N. Fijalkow, G.
Lagarde, arXiv 2023.
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Two straightforward observations

Problems in NP

For all L ∈ {LTL,CTL,ATL} and subsets of operators O ⊆ Op:

the problem PvLnL(O) is in NP (use guess-and-check sub-routine)

Comparing LTL and CTL learning, CTL and ATL learning

For all subsets of operators O ⊆ Op:

PvLnLTL(O) ⪯LogSpace PvLnCTL(O)

For all k ∈ N1, PvLnCTL(O) ⪯LogSpace PvLnATLk(O)
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Complexity with binary operators

Set of all binary operators

BinOp := {∧,∨,⇒, . . . ,U,R, . . .}

Corollary

For all O ⊆ Op s.t. O ∩ BinOp ̸= ∅ and L ∈ {LTL,CTL,ATLk | k ∈ N1}:

The decision problem PvLnL(O) is NP-hard

First summary

Unlimited use
of binary
operators

LTL

NP-c
CTL
ATL2
ATL
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Look for tractable cases

Add restrictions on the use of binary operators

For n ∈ N, we define the decision problem PvLnL(O, n):

Like PvLnL(O), but we consider L-formulas with at most n occurrences of
propositional binary operators in O

Full summary

Unlimited use Limited use of binary operators
of binary

With X
Without X

operators With F,G Only F or only G

LTL

NP-c

L
CTL NP-c NL-c
ATL2 NP-c P-c
ATL NP-c
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Abstract recipe

Hitting set problem

Input: l ∈ N1, subsets C = C1, . . . , Cn ⊆ [1, . . . , l], k ≤ l

Output: Yes iff there is H ⊆ [1, . . . , l] such that:

|H| ≤ k
for all 1 ≤ i ≤ n, we have H ∩ Ci ̸= ∅

Pick a logic L and set of operators O ⊆ Op

From an instance (l, C, k) of the hitting set problem:

1 Define a type of L(O)-formulas ϕl(H), for H ⊆ [1, . . . , l]

2 Define the bound B ∈ N and (+,−) instances that a formula
separates iff it is equal to some ϕl(H), for H ⊆ [1, . . . , l]

3 Define a −instance that ϕl(H) accepts iff |H| ≥ k + 1

4 For i ≤ n, define a +instance that ϕl(H) accepts iff H ∩ Ci ̸= ∅
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Application: when L = CTL, X ∈ O

Step 1: type of formulas

For l ∈ N1 and H ⊆ [1, . . . , l]:

ϕl(H) := R1X R2X . . . RlX p

with Ri ∈ {∃,∀} and Ri = ∃ iff i ∈ H.
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Application: when L = CTL, X ∈ O

Step 3: bounding the size of H = bounding the number of ∃
When l = 4 and k = 1, define a −instance

Kripke structure K4,2≤:

We have K4,2≤ |= ϕ4(H) iff |H| ≥ 2
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∅
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Application: when L = CTL, X ∈ O

Step 4: H intersects the set Ci = an ∃ index is in Ci

When l = 4 and Ci = {2, 3} ⊆ [1, . . . , 4], define a +instance

Kripke structure K4,Ci :

We have K4,Ci |= ϕ4(H) iff H ∩ Ci = ∅
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Summary of our results

Summary

Unlimited use Limited use of binary operators
of binary

With X
Without X

operators With F,G Only F or only G

LTL

NP-c

L
CTL NP-c NL-c
ATL2 NP-c P-c
ATL NP-c
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Take home message and future work

The passive learning of temporal logic formulas

NP-hard as soon as there is an unlimited use of binary operators

By limiting the use of binary operators, we recover some tractable
cases

Various questions could be explored

Allow a restricted use of binary temporal operators

Look for tractable approximation algorithms

What if the bound is written in binary?

. . .
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