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Formulation of a problem

Let f be some Boolean function.
The deterministic query complexity of f is the smallest
depth of a deterministic decision tree that computes f (x)
by querying the bits of x . Denote it as D(f ).
How difficult is to find D(f )?
The answer depends on the way how f is given.
tt-DT We are given f as a truth table, meaning a binary
string of length N = 2n so that f (x) appears at the x-th
position.
circuit-DT We are given f as a Boolean circuit, which
potentially allows for a more succinct encoding of f .
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Upper bounds: tt-DT belongs to P

Theorem
tt-DT belongs to P. More precisely, there is an algorithm that
computes the DT-complexity of an n-ary Boolean function in
time O(3n · n) = O(N1.585... logN), where N = 2n.

Proof.
For any partial assignment ρ ∈ {0,1, ∗}n, D(f |ρ) = 0 if f is
constant on ρ, and otherwise

D(f |ρ) = min
i∈ρ−1(∗)

{1 + max
b∈{0,1}

D(f |ρ·[i←b])}.

This gives us a dynamic programming algorithm.
There are 3n partial assignments in total, and each
computation D(f |ρ) takes time O(n) in a RAM.
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Game reformulation of D(f ) ≤ k

Consider the following game between Alice and Bob.
The game lasts for k steps.
At every step, Alice chooses a variable xi , and Bob sets
xi = 0 or xi = 1.
After k steps, Alice wins if f |ρ is constant on the partial
assignment corresponding to Alice and Bob’s moves;
otherwise, Bob wins.
Alice has a winning strategy in this game iff D(f ) ≤ k .
Indeed, if D(f ) ≤ k , then Alice can make moves according
to the corresponding tree.
If D(f ) > k then Bob’s strategy is to repeatedly choose the
value b ∈ {0,1} that maximizes D(f |[i←b]).
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Upper bounds: circuit-DT belongs to PSPACE

One can algorithmically find the winner in the game by a simple
recursive algorithm.

Theorem
circuit-DT belongs to PSPACE.

Denote by ÑC1 the class of functions f : {0,1}n → {0,1}m

computable by Boolean circuits (with binary AND and OR
gates, and unary NOT gates) in depth O(log n · log log n) and
size (n,m).

Theorem

tt-DT is in ÑC1.

Proof.
One can implement the algorithm for tt-DT is in P.
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Lower bounds

Our main results are the following.

Theorem
circuit-DT is PSPACE-hard under polynomial-time reductions.

Theorem

tt-DT is NC1-hard under NC0-reduction.

We say that A ≤NC0 B, if there is a simply (namely,
DLOGTIME-uniform) family of NC0-circuits Cn such that, for
every x ∈ {0,1}n, x ∈ A iff Cn(x) ∈ B.
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Other NC1-hard problems
The S5 identity problem, S5IP, is the problem of deciding if the
product of given permutations from S5 is equal to the identity.

Theorem (Barrington)

Then S5IP is NC1-complete under ≤NC0 reductions.

tt-TQBF We are given as input a Boolean function
h : {0,1}2n → {0,1} as a truth table, and wish to know whether
it holds:

∃y1∀x1∃y2∀x2 . . . ∃yn∀xnh(y1, x1, y2, x2, . . . yn, xn),

Theorem

tt-TQBF is NC1-complete under ≤NC0 reductions.

We reduce TQBF (tt-TQBF) to circuit-DT (tt-DT) to prove our
main result.
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Open problems

1 What is the exact time-complexity of tt-DT? Is it possible to
improve O(3nn)-algorithm ? Is it possible to prove any
non-trivial bounds (for example, under the Exponential
Time Hypothesis)?

2 Is it possible to improve the O(logN log logN)-depth bound
of tt-DT?

3 What is the exact time, space, and circuit complexity of the
problem of finding the minimum size of a decision tree that
computes a given Boolean function?

4 What can we say about the problem of approximating DT
complexity?
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Thank you!

Bruno Loff, Alexey Milovanov The Hardness of Decision Tree Complexity


