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Our Results

Parameter Exact Approximation

NP-complete m1/2−ε-approximation is NP-hard

k XP and W[1]-hard
c · k-approximation for any c

no o(k)-approximation in f(k) · poly(n) time

ℓ
FPT ⌈

√
ℓ⌉-approximation

no poly kernel
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Upper and Lower (FPT) Approximation Bounds



A Polynomial-time Approximation Algorithm

• find terminal pair of minimum distance

• connect by any shortest path

• remove all vertices in the path and all
terminal pairs whose distance increases

• repeat until no terminal pair is left

• if dist(si , ti ) + 1 ≤
√
ℓ: remove at

most
√
ℓ terminal pairs in optimal

solution

• if dist(si , ti ) + 1 >
√
ℓ: at most

√
ℓ

terminal pairs left in optimal solution

⇝
√
ℓ-approximation in polynomial time
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The General Idea
for excluding m1/2−ε-approximations

• Computing a n1−ε-approximation for Clique is NP-hard.

• Reduction to Vertex-Disjoint Shortest Paths such that the optimal
solution corresponds to a largest clique and m′ ∈ O(n2)
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The Reduction

v1 v2 v3

v4 v5 v6
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Excluding Polynomial Kernels



A Special Case

dist(si , ti ) = # layers - 1
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Or Composition

input: t instances I1, I2, . . . , It of special case
all with same number of layers and
terminal pairs

output: one instance (I , ℓ) of vertex-disjoint
shortest paths such that

• I is a yes-instance ⇔ at least one
input instance is a yes-instance

• |I | ≤ poly(
∑t

i=1 |Ii |)
• ℓ ≤ poly(maxti=1 |Ii |+ log(t))

approach: iteratively combine two
instances such that number of layers
increase by O(k)

I1 I2 I3 I4
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The Gadget
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Conclusion

Parameter Exact Approximation

NP-complete m1/2−ε-approximation is NP-hard

k XP and W[1]-hard
c · k-approximation for any c

no o(k)-approximation in f(k) · poly(n) time

ℓ
FPT ⌈

√
ℓ⌉-approximation

no poly kernel

• FPT approximation for structural parameters?

• poly(ℓ)-size lossy kernels with approximation factors in o(
√
ℓ) (or even constant)?

Thank you.
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