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Disjoint Shortest Paths

Input:  An undirected graph G and vertex pairs (s;, ti)icf1,2,.. k}-
Task: Connect as many terminal pairs as possible via vertex-disjoint
shortest s;-t;-paths.
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Upper and Lower (FPT) Approximation Bounds
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The Reduction
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Excluding Polynomial Kernels



A Special Case

dist(s;, t;) = # layers - 1
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Or Composition
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The Gadget
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