Toward Better Depth Lower Bounds: Strong Composition of XOR and a Random Function

Nikolai Chukhin, Alexander S Kulikov, Ivan Mihajlin

March 6, 2025

《曰》 《聞》 《臣》 《臣》 三臣 …

We want to prove:

 $P \neq NC^1$

٠

We want to prove:

 $P \neq NC^1$

$n^{3.1}$ circuit lower bound for an explicit *f*.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

We want to prove:

 $P \neq NC^1$

 $n^{3.1}$ circuit lower bound for an explicit *f*. $n^{2.1}$ circuit lower bound for an explicit *f* without random restrictions.

We want to prove:

 $P \neq NC^1$

n^{3.1} circuit lower bound for an explicit *f*. n^{2.1} circuit lower bound for an explicit *f* without random restrictions. n^{2.1} almost circuit lower bound for an explicit *f* without random restrictions.

Karchmer-Wigderson games

Definition

The Karchmer-Wigderson game for $f : \{0, 1\}^n \rightarrow \{0, 1\}$:

- Alice gets $x \in \{0, 1\}^n$ such that f(x) = 0.
- Bob gets $y \in \{0, 1\}^n$ such that f(y) = 1.
- Their goal is to find $i \in [n]$ such that $x_i \neq y_i$.

The Karchmer-Wigderson relation for f:

 $KW_f = \{(x, y, i) \mid x, y \in \{0, 1\}^n, i \in [n], f(x) = 0, f(y) = 1, x_i \neq y_i\}.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

KRW conjecture

Definition

For $f: \{0,1\}^m \to \{0,1\}$ and $g: \{0,1\}^n \to \{0,1\}$, the block-composition $f \diamond g: (\{0,1\}^n)^m \to \{0,1\}$ is defined by

$$(f \diamond g)(x_1,\ldots,x_m) = f(g(x_1),\ldots,g(x_m)),$$

where $x_1, ..., x_m \in \{0, 1\}^n$.

Conjecture (The KRW conjecture) Let $f, g : \{0, 1\}^m \rightarrow \{0, 1\}$ be non-constant functions. Then

$$\mathrm{CC}(\mathrm{KW}_{f\diamond g})\approx \mathrm{CC}(\mathrm{KW}_{f})+\mathrm{CC}(\mathrm{KW}_{g}).$$

Theorem *KRW conjecture implies* $P \not\subseteq NC^1$.

Composition of KW games

◆□ ▶ ◆酉 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○

Composition of KW games

Solve KW_f on (a, b) first, then solve KW_g on (X_i, Y_i) .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Strong Composition

Definition

 $\mathrm{KW}_{f} \otimes \mathrm{KW}_{g}$ for $f : \{0, 1\}^{n} \to \{0, 1\}$:

- ► Alice gets $X \in \{0, 1\}^{n \times m}$ such that $(f \circ g)(X) = 0$.
- ▶ Bob gets $Y \in \{0, 1\}^{n \times m}$ such that $(f \circ g)(Y) = 1$
- ► Their goal is to find $i, j \in [n]$ such that $X_{i,j} \neq Y_{i,k}$ and $g(X_i) \neq g(Y_i)$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Universal relation

The universal relation of length n,

$$U_n = \{(x, y, i) \mid x, y \in \{0, 1\}^n, i \in [n], x_i \neq y_i\}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Known results

 [Edmonds, Impagliazzo, Rudich, Sgall, 01] and [Håstad, Wigderson, 98]:

$$\mathrm{CC}(\mathrm{U}_n\diamond\mathrm{U}_n)=2n-o(n).$$

 [Gavinsky, Meir, Weinstein, Wigderson, 16], improved by [Meir, Koroth, 19] (proof by measure argument):

$$CC(f \diamond U_n) = \log L(f) + n - O(\log^* n).$$

[Mihajlin, Smal 21], improved by [Wu 23]:

$$\exists g: CC(U_n \diamond g) \ge 2n - o(n).$$

Meir 23 :

 $\forall f, \exists g CC(KW_f \circledast KW_g) \geq CC(KW_f) - 0.96m + n - O(\log(mn))$

Results

Theorem With probability 1 - o(1), for a random function $f: \{0, 1\}^{\log m} \rightarrow \{0, 1\}$, any protocol solving $KW_{XOR_m} \otimes KW_f$ has at least $n^{3-o(1)}$ leaves, where $n = m \log m$.

Results

Theorem

With probability 1 - o(1), for a random function $f: \{0, 1\}^{\log m} \rightarrow \{0, 1\}$, any protocol solving $KW_{XOR_m} \otimes KW_f$ has at least $n^{3-o(1)}$ leaves, where $n = m \log m$.

Theorem

For any 0.49-balanced function $f: \{0, 1\}^{\log m} \to \{0, 1\}$, any protocol solving $KW_{XOR_m} \otimes KW_f$ has at least $n^{2-o(1)} \cdot L_{\frac{3}{4}}(f)$ leaves, where $n = m \log m$.

シック・ ボー・ キョッ キョッ シック

Khrapchenko's Graph for XOR₃

For a biparite graph $G(A \sqcup B, E)$, let

 $\psi(G) = \operatorname{avgdeg}(G, A) \cdot \operatorname{avgdeg}(G, B).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Khrapchenko's Graph for XOR₃

For a biparite graph $G(A \sqcup B, E)$, let

$$\psi(G) = \operatorname{avgdeg}(G, A) \cdot \operatorname{avgdeg}(G, B).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem

Any protocol that solves KW_{XOR_m} has depth at least $2\log m$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem

Any protocol that solves $KW_{XOR_{\it m}}$ has depth at least $2\log m.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$\psi(G_r) = n^2$$
, G_r is the graph at the root

Theorem

Any protocol that solves KW_{XOR_m} has depth at least $2\log m$.

- $\psi(G_r) = n^2$, G_r is the graph at the root
- ▶ $\psi(G_l) \leq 1$, , G_r is a graph at the leaf.

Theorem

Any protocol that solves $KW_{XOR_{\it m}}$ has depth at least $2\log m.$

- $\psi(G_r) = n^2$, G_r is the graph at the root
- ▶ $\psi(G_l) \leq 1$, , G_r is a graph at the leaf.
- ψ is subadditive.

$OR_d \otimes f$

Hard on rectangle $A \times B$ if f is hard to approximate and both A and B have large projections on every row.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

First stage: Go down the protocol trying to maximize $\psi(G)$ until the average degree of one part becomes less $\tilde{O}(1)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Plan

- First stage: Go down the protocol trying to maximize $\psi(G)$ until the average degree of one part becomes less $\tilde{O}(1)$.
- ► Second stage: Focus on a node of degree $d = \tilde{\Omega}(\psi(G))$ and its neighbors. This is almost the same as solving $OR_d \otimes f$, which requires $d \cdot L_{\frac{3}{4}}(f)$.

Open problems

Open problems

- ▶ Replace $L_{\frac{3}{4}}(f)$ by *L*.
- Replace strong composition by the regular one.

Open problems

- ▶ Replace $L_{\frac{3}{4}}(f)$ by *L*.
- Replace strong composition by the regular one.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▶ Prove $P \neq NC_1$

Thank You!