

STACS 2025, Jena, Germany March 4, 2025

¹The Technion. ²CNRS, Université de Lille. ³Ariel University.

- ▶ We are interested in the length of (shortest) proofs in various proof systems.
- We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for some other co-NP-complete language):

$$\neg \exists x_1, x_2, \ldots, x_n \in \{0, 1\} \qquad \Phi(x_1, x_2, \ldots, x_n)$$

quantifier-free formula in CNF

A proof system is a polynomial-time deterministic verification algorithm $V(\Phi, \pi)$:

 $\Phi\in {f UNSAT} \hspace{.1in} \Longrightarrow \hspace{.1in}$ there is a proof π such that $V(\Phi,\pi)=1$

 $\Phi \notin {\sf UNSAT} \implies$ for every candidate proof $\kappa, \; V(\Phi,\kappa)=0$

A well-known proof system: Resolution, a proof is a derivation of the empty clause (false) from the input clauses using the rule

$$\frac{A \lor x \qquad B \lor \overline{x}}{A \lor B}$$

- A specific proof system Π has no polynomial-size proofs for some formulas $\{\Phi_n\}$.
- System II_s polynomially simulates system II_w (II_w-proofs can be rewritten as II_s-proofs with at most polynomial increase in size).
- System Π_S has polynomial-size proofs for some specific formulas $\{\Phi_n\}$ while system Π_W has none

- ▶ We are interested in the length of (shortest) proofs in various proof systems.
- We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for some other co-NP-complete language):

$$\neg \exists x_1, x_2, \dots, x_n \in \{0, 1\} \qquad \underbrace{\Phi(x_1, x_2, \dots, x_n)}_{}$$

quantifier-free formula in CNF

A proof system is a polynomial-time deterministic verification algorithm $V(\Phi, \pi)$:

$$\Phi \in \mathbf{UNSAT} \implies$$
 there is a proof π such that $V(\Phi, \pi) = 1$

$$\Phi \notin \mathbf{UNSAT} \implies$$
 for every candidate proof κ , $V(\Phi, \kappa) = 0$

A well-known proof system: Resolution, a proof is a derivation of the empty clause (false) from the input clauses using the rule

$$\frac{A \lor x \qquad B \lor \overline{x}}{A \lor B}$$

- A specific proof system Π has no polynomial-size proofs for some formulas $\{\Phi_n\}$.
- System II_s polynomially simulates system II_w (II_w-proofs can be rewritten as II_s-proofs with at most polynomial increase in size).
- System Π_S has polynomial-size proofs for some specific formulas $\{\Phi_n\}$ while system Π_W has none

- ▶ We are interested in the length of (shortest) proofs in various proof systems.
- We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for some other co-NP-complete language):

$$\neg \exists x_1, x_2, \dots, x_n \in \{0, 1\} \qquad \underbrace{\Phi(x_1, x_2, \dots, x_n)}_{}$$

quantifier-free formula in CNF

A proof system is a polynomial-time deterministic verification algorithm $V(\Phi, \pi)$:

 $\Phi \in \textbf{UNSAT} \implies \text{ there is a proof } \pi \text{ such that } V(\Phi,\pi) = 1$

 $\Phi \notin \textbf{UNSAT} \implies \text{ for every candidate proof } \kappa, \ \textit{V}(\Phi, \kappa) = 0$

A well-known proof system: Resolution, a proof is a derivation of the empty clause (false) from the input clauses using the rule

$$\frac{A \lor x \qquad B \lor \overline{x}}{A \lor B}$$

- A specific proof system Π has no polynomial-size proofs for some formulas $\{\Phi_n\}$.
- System II_s polynomially simulates system II_W (II_W-proofs can be rewritten as II_s-proofs with at most polynomial increase in size).
- System Π_S has polynomial-size proofs for some specific formulas $\{\Phi_n\}$ while system Π_W has none

- ▶ We are interested in the length of (shortest) proofs in various proof systems.
- We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for some other co-NP-complete language):

$$\neg \exists x_1, x_2, \dots, x_n \in \{0, 1\} \qquad \underbrace{\Phi(x_1, x_2, \dots, x_n)}_{}$$

quantifier-free formula in CNF

A proof system is a polynomial-time deterministic verification algorithm $V(\Phi, \pi)$:

 $\Phi \in \textbf{UNSAT} \implies \text{ there is a proof } \pi \text{ such that } V(\Phi,\pi) = 1$

 $\Phi \notin \textbf{UNSAT} \implies \text{ for every candidate proof } \kappa, \ \textbf{V}(\Phi, \kappa) = 0$

A well-known proof system: Resolution, a proof is a derivation of the empty clause (false) from the input clauses using the rule

$$\frac{A \lor x \qquad B \lor \overline{x}}{A \lor B}$$

- A specific proof system Π has no polynomial-size proofs for some formulas $\{\Phi_n\}$.
- System Π_S polynomially simulates system Π_W (Π_W-proofs can be rewritten as Π_S-proofs with at most polynomial increase in size).
- System Π_S has polynomial-size proofs for some specific formulas $\{\Phi_n\}$ while system Π_W has none

Good old LP systems

Axioms $x_i \ge 0$, $1 - x_i \ge 0$. Clause $\bigvee_i \ell_i$ is translated to $\sum_i \ell_i \ge 1$. Cutting Planes (CP) [W.Cook, Coullard, Turán] based on Gomory-Chvátal cuts

$$\frac{f_1 \ge 0 \quad f_2 \ge 0}{\alpha_1 f_1 + \alpha_2 f_2 \ge 0} \ (\alpha_1, \alpha_2 \ge 0), \qquad \frac{\sum_i c \mathbf{a}_i x_i - d \ge 0}{\sum_i \mathbf{a}_i x_i - \lceil d/c \rceil \ge 0} \ (\mathbf{c}, \mathbf{a}_i, \mathbf{d} \in \mathbb{Z}).$$

Resolution over Cutting Planes (Res(CP)) [Krajíček]

$$\frac{f_1 \ge 0 \lor \Gamma \qquad f_2 \ge 0 \lor \Gamma}{\alpha_1 f_1 + \alpha_2 f_2 \ge 0 \lor \Gamma} (\alpha_1, \alpha_2 \ge 0) \quad (+\text{RES}) \\
\frac{\sum_i c a_i x_i - d \ge 0 \lor \Gamma}{\sum_i a_i x_i - \lceil d/c \rceil \ge 0 \lor \Gamma} (c, a_i, d \in \mathbb{Z}). \\
\frac{-}{f - 1 \ge 0 \lor -f \ge 0}. \quad (\text{NEG-INT})$$

Resolution over Linear Programming (Res(LP)) [H, Kojevnikov]

$$\frac{f_1 \ge 0 \lor \Gamma}{\alpha_1 f_1 + \alpha_2 f_2 \ge 0 \lor \Gamma} (\alpha_1, \alpha_2 \ge 0)$$
(+RES)

$$\frac{1}{x-1 \ge 0 \quad \forall \quad -x \ge 0} \quad (x \text{ is a variable}). \tag{NEG-BOOL}$$

Good old LP systems

Axioms $x_i \ge 0$, $1 - x_i \ge 0$. Clause $\bigvee_i \ell_i$ is translated to $\sum_i \ell_i \ge 1$. Cutting Planes (CP) [W.Cook, Coullard, Turán] based on Gomory-Chvátal cuts

$$\frac{f_1 \ge 0 \quad f_2 \ge 0}{\alpha_1 f_1 + \alpha_2 f_2 \ge 0} \ (\alpha_1, \alpha_2 \ge 0), \qquad \frac{\sum_i c \mathbf{a}_i x_i - d \ge 0}{\sum_i \mathbf{a}_i x_i - \lceil d/c \rceil \ge 0} \ (\mathbf{c}, \mathbf{a}_i, \mathbf{d} \in \mathbb{Z}).$$

Resolution over Cutting Planes (Res(CP)) [Krajíček]

$$\frac{f_1 \ge 0 \lor \Gamma \qquad f_2 \ge 0 \lor \Gamma}{\alpha_1 f_1 + \alpha_2 f_2 \ge 0 \lor \Gamma} (\alpha_1, \alpha_2 \ge 0) \quad (+\text{RES})$$

$$\frac{\sum_i c a_i x_i - d \ge 0 \lor \Gamma}{\sum_i a_i x_i - \lceil d/c \rceil \ge 0 \lor \Gamma} (c, a_i, d \in \mathbb{Z}).$$

$$\frac{f_1 \ge 0 \lor -f \ge 0}{f - 1 \ge 0 \lor -f \ge 0}.$$
(NEG-INT)

Resolution over Linear Programming (Res(LP)) [H, Kojevnikov]

$$\frac{f_1 \ge 0 \lor \Gamma}{\alpha_1 f_1 + \alpha_2 f_2 \ge 0 \lor \Gamma} (\alpha_1, \alpha_2 \ge 0)$$
(+RES)

$$\frac{1}{x-1 \ge 0 \quad \forall \quad -x \ge 0} \quad (x \text{ is a variable}). \tag{NEG-BOOL}$$

Good old LP systems

Axioms $x_i \ge 0$, $1 - x_i \ge 0$. Clause $\bigvee_i \ell_i$ is translated to $\sum_i \ell_i \ge 1$. Cutting Planes (CP) [W.Cook, Coullard, Turán] based on Gomory-Chvátal cuts

$$\frac{f_1 \ge 0 \quad f_2 \ge 0}{\alpha_1 f_1 + \alpha_2 f_2 \ge 0} \ (\alpha_1, \alpha_2 \ge 0), \qquad \frac{\sum_i c \mathbf{a}_i x_i - d \ge 0}{\sum_i \mathbf{a}_i x_i - \lceil d/c \rceil \ge 0} \ (\mathbf{c}, \mathbf{a}_i, \mathbf{d} \in \mathbb{Z}).$$

Resolution over Cutting Planes (Res(CP)) [Krajíček]

$$\frac{f_1 \ge 0 \lor \Gamma \qquad f_2 \ge 0 \lor \Gamma}{\alpha_1 f_1 + \alpha_2 f_2 \ge 0 \lor \Gamma} (\alpha_1, \alpha_2 \ge 0) \qquad (+\text{RES})$$

$$\frac{\sum_i c a_i x_i - d \ge 0 \lor \Gamma}{\sum_i a_i x_i - \lceil d/c \rceil \ge 0 \lor \Gamma} (c, a_i, d \in \mathbb{Z}).$$

$$\frac{f_1 \ge 0 \lor \Gamma}{f_1 + \alpha_2 f_2 \ge 0 \lor \Gamma} (c, a_i, d \in \mathbb{Z}).$$
(NEG-INT)

Resolution over Linear Programming (Res(LP)) [H, Kojevnikov]

$$\frac{f_1 \ge 0 \vee \Gamma}{\alpha_1 f_1 + \alpha_2 f_2 \ge 0 \vee \Gamma} \quad (\alpha_1, \alpha_2 \ge 0)$$
(+RES)

$$\frac{1}{x-1 \ge 0 \quad \forall \quad -x \ge 0}$$
 (x is a variable). (NEG-BOOL)

Facts:

 Exponential lower bound for CP star* for unary coefficients [Pudlák] following [Krajíček] for CP*

treelike proofs: used twice, derived twice

- Quasipolynomial simulation of treelike Res(CP*) in CP [Fleming et al.]
- Exponential lower bound for treelike Res(CP) [Gläser, Pfetsch]
- (Daglike) Res(LP*)=Res(CP*)
 [H, Kojevnikov]

Open:

Exponential lower bounds for (daglike, not treelike!) Res(LP*)? Res(CP) is more popular, but it may be stronger

Min-plus arithmetic over \mathbb{Q}_∞ :

 $a \oplus b = \min(a, b), \quad a \odot b = a + b$

Tropical monomial:

$$m = x_1^{d_1} \odot x_2^{d_2} \odot \ldots \odot x_k^{d_k} \qquad (\sum d_i x_i)$$

Tropical term:

$$t = c \odot m, \quad c \in \mathbb{Q} \tag{(m+c)}$$

The empty monomial (term), ∞ plays the role of zero:

 \sim

Tropical polynomial:

$$p = t_1 \oplus t_2 \oplus \ldots \oplus t_m \qquad (\min(t_1, \ldots, t_m))$$

Min-plus inequality:

In the usual terms (for linear functions L_i, L'_i):

 $\min(L_1,\ldots,L_m) \leqslant \min(L'_1,\ldots,L'_s)$

or

 $L_1 \leqslant L'_j \quad \forall \quad L_2 \leqslant L'_j \quad \forall \quad \dots \quad \forall \quad L_m \leqslant L'_j \qquad (\text{for every } j)$

Min-plus arithmetic over \mathbb{Q}_{∞} :

 $a \oplus b = \min(a, b), \qquad a \odot b = a + b$

Tropical monomial:

$$\boldsymbol{m} = \boldsymbol{x}_1^{\boldsymbol{d}_1} \odot \boldsymbol{x}_2^{\boldsymbol{d}_2} \odot \ldots \odot \boldsymbol{x}_k^{\boldsymbol{d}_k} \qquad (\sum d_i \boldsymbol{x}_i)$$

Tropical term:

$$t = c \odot m, \quad c \in \mathbb{Q}$$
 $(m+c)$

The empty monomial (term), ∞ plays the role of zero:

 ∞

Tropical polynomial:

$$\boldsymbol{p} = \boldsymbol{t}_1 \oplus \boldsymbol{t}_2 \oplus \ldots \oplus \boldsymbol{t}_m \qquad (\min(\boldsymbol{t}_1, \ldots, \boldsymbol{t}_m))$$

Min-plus inequality:

In the usual terms (for linear functions L_i, L'_i):

 $\min(\boldsymbol{L}_1,\ldots,\boldsymbol{L}_m) \leqslant \min(\boldsymbol{L}'_1,\ldots,\boldsymbol{L}'_s)$

or

 $L_1 \leqslant L'_j \quad \forall \quad L_2 \leqslant L'_j \quad \lor \quad \dots \quad \lor \quad L_m \leqslant L'_j \qquad (\text{for every } j)$

Min-plus arithmetic over \mathbb{Q}_{∞} :

 $a \oplus b = \min(a, b), \qquad a \odot b = a + b$

Tropical monomial:

$$\boldsymbol{m} = \boldsymbol{x}_1^{\boldsymbol{d}_1} \odot \boldsymbol{x}_2^{\boldsymbol{d}_2} \odot \ldots \odot \boldsymbol{x}_k^{\boldsymbol{d}_k} \qquad (\sum d_i \boldsymbol{x}_i)$$

Tropical term:

$$t = c \odot m, \quad c \in \mathbb{Q}$$
 $(m+c)$

The empty monomial (term), ∞ plays the role of zero:

 ∞

Tropical polynomial:

$$\boldsymbol{p} = \boldsymbol{t}_1 \oplus \boldsymbol{t}_2 \oplus \ldots \oplus \boldsymbol{t}_m \qquad (\min(\boldsymbol{t}_1, \ldots, \boldsymbol{t}_m))$$

Min-plus inequality:

In the usual terms (for linear functions L_i, L'_i):

 $\min(L_1,\ldots,L_m) \leqslant \min(L'_1,\ldots,L'_s)$

or

 $L_1 \leqslant L'_j \quad \lor \quad L_2 \leqslant L'_j \quad \lor \quad \ldots \quad \lor \quad L_m \leqslant L'_j \qquad (ext{for every } j)$

Min-plus arithmetic over \mathbb{Q}_{∞} :

 $a \oplus b = \min(a, b), \qquad a \odot b = a + b$

Tropical monomial:

$$\boldsymbol{m} = \boldsymbol{x}_1^{\boldsymbol{d}_1} \odot \boldsymbol{x}_2^{\boldsymbol{d}_2} \odot \ldots \odot \boldsymbol{x}_k^{\boldsymbol{d}_k} \qquad (\sum d_i \boldsymbol{x}_i)$$

$$t = c \odot m, \quad c \in \mathbb{Q}$$
 $(m + c)$

The empty monomial (term), ∞ plays the role of zero:

 ∞

Tropical polynomial:

$$\boldsymbol{\rho} = \boldsymbol{t}_1 \oplus \boldsymbol{t}_2 \oplus \ldots \oplus \boldsymbol{t}_m \qquad (\min(\boldsymbol{t}_1, \ldots, \boldsymbol{t}_m))$$

Min-plus inequality:

In the usual terms (for linear functions L_i, L'_i):

 $\min(L_1,\ldots,L_m) \leqslant \min(L'_1,\ldots,L'_s)$

or

 $L_1 \leqslant L'_j \quad \lor \quad L_2 \leqslant L'_j \quad \lor \quad \ldots \quad \lor \quad L_m \leqslant L'_j \qquad (ext{for every } j)$

Min-plus arithmetic over \mathbb{Q}_{∞} :

 $a \oplus b = \min(a, b), \quad a \odot b = a + b$

Tropical monomial:

$$\boldsymbol{m} = \boldsymbol{x}_1^{\boldsymbol{d}_1} \odot \boldsymbol{x}_2^{\boldsymbol{d}_2} \odot \ldots \odot \boldsymbol{x}_k^{\boldsymbol{d}_k} \qquad (\sum d_i \boldsymbol{x}_i)$$

$$t = c \odot m, \quad c \in \mathbb{Q}$$
 $(m + c)$

The empty monomial (term), ∞ plays the role of zero:

 ∞

Tropical polynomial:

$$\boldsymbol{p} = \boldsymbol{t}_1 \oplus \boldsymbol{t}_2 \oplus \ldots \oplus \boldsymbol{t}_m \qquad (\min(\boldsymbol{t}_1, \ldots, \boldsymbol{t}_m))$$

Min-plus inequality:

 $\pmb{p}_1 \leqslant \pmb{p}_2$

In the usual terms (for linear functions L_i, L'_i):

 $\min(\boldsymbol{L}_1,\ldots,\boldsymbol{L}_m) \leqslant \min(\boldsymbol{L}_1',\ldots,\boldsymbol{L}_s')$

or

$$L_1 \leqslant L'_j \quad \lor \quad L_2 \leqslant L'_j \quad \lor \quad \ldots \quad \lor \quad L_m \leqslant L'_j \qquad (\text{for every } j)$$

Input system of min-plus inequalities: $f_1 \leqslant g_1$, $f_2 \leqslant g_2$, ..., $f_m \leqslant g_m$.

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii]. Multiply $f_i \leq g_i$ by polynomials and take the sum:

$$\bigoplus_i f_i \odot p_i \leqslant \bigoplus_i g_i \odot p_i$$

so that for every monomial (including ∞), its coefficient on the left is > than on the right. $1 \odot x \odot y \bigoplus \frac{1}{2} \leq 0 \odot x \odot y \bigoplus -\frac{1}{2}$ $\min(x + y + 1, \frac{1}{2}) \leq \min(x + y, -\frac{1}{2})$

Min-Plus Polynomial Calculus (MP-PC).

Do it step by step.

- Take the tropical sum \oplus .
- Multiply by a term.
- Transitivity of \leq .
- ▶ Thus compose an MP-NS-like inequality.

Tropical resolution rule:

$$\frac{t\oplus f\leqslant 0 \quad t'\oplus f\leqslant 0}{(t\odot t')\oplus f\leqslant 0}, \text{ where } t,t' \text{ are terms.}$$

Input system of min-plus inequalities: $f_1 \leqslant g_1$, $f_2 \leqslant g_2$, ..., $f_m \leqslant g_m$.

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii]. Multiply $f_i \leq g_i$ by polynomials and take the sum:

$$\bigoplus_i f_i \odot p_i \leqslant \bigoplus_i g_i \odot p_i$$

so that for every monomial (including ∞), its coefficient on the left is > than on the right. $1 \odot x \odot y \bigoplus \frac{1}{2} \leq 0 \odot x \odot y \bigoplus -\frac{1}{2}$ $\min(x + y + 1, \frac{1}{2}) \leq \min(x + y, -\frac{1}{2})$

Min-Plus Polynomial Calculus (MP-PC).

Do it step by step.

- Take the tropical sum \oplus .
- Multiply by a term.
- Transitivity of \leq .
- ► Thus compose an MP-NS-like inequality.

Tropical resolution rule:

$$\frac{t \oplus f \leqslant 0 \qquad t' \oplus f \leqslant 0}{(t \odot t') \oplus f \leqslant 0}, \text{ where } t, t' \text{ are terms.}$$

16.37

Input system of min-plus inequalities: $f_1 \leqslant g_1$, $f_2 \leqslant g_2$, ..., $f_m \leqslant g_m$.

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii]. Multiply $f_i \leq g_i$ by polynomials and take the sum:

$$\bigoplus_i f_i \odot p_i \leqslant \bigoplus_i g_i \odot p_i$$

so that for every monomial (including ∞), its coefficient on the left is > than on the right. $1 \odot x \odot y \bigoplus \frac{1}{2} \leq 0 \odot x \odot y \bigoplus -\frac{1}{2}$ $\min(x + y + 1, \frac{1}{2}) \leq \min(x + y, -\frac{1}{2})$

Min-Plus Polynomial Calculus (MP-PC).

Do it step by step.

- Take the tropical sum \oplus .
- Multiply by a term.
- ► Transitivity of ≤.
- Thus compose an MP-NS-like inequality.

Tropical resolution rule:

 $\frac{\oplus f \leqslant 0 \qquad t' \oplus f \leqslant 0}{(t \odot t') \oplus f \leqslant 0}, \text{ where } t, t' \text{ are terms}$

Input system of min-plus inequalities: $f_1 \leqslant g_1$, $f_2 \leqslant g_2$, ..., $f_m \leqslant g_m$.

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii]. Multiply $f_i \leq g_i$ by polynomials and take the sum:

$$\bigoplus_i f_i \odot p_i \leqslant \bigoplus_i g_i \odot p_i$$

so that for every monomial (including ∞), its coefficient on the left is > than on the right. $1 \odot x \odot y \bigoplus \frac{1}{2} \leq 0 \odot x \odot y \bigoplus -\frac{1}{2}$ $\min(x + y + 1, \frac{1}{2}) \leq \min(x + y, -\frac{1}{2})$

Min-Plus Polynomial Calculus (MP-PC).

Do it step by step.

- Take the tropical sum \oplus .
- Multiply by a term.
- ► Transitivity of ≤.
- ► Thus compose an MP-NS-like inequality.

Tropical resolution rule:

$$\frac{t \oplus f \leqslant 0 \qquad t' \oplus f \leqslant 0}{(t \odot t') \oplus f \leqslant 0}, \text{ where } t, t' \text{ are terms.}$$

$$(\odot RES)$$

General picture

Important: there is **no** equivalence of MP-PC to Res(LP) without (ORES), with some evidence.

Daglike Resolution in MP-NSR

Translate $A = \ell_1 \vee \ldots \vee \ell_k$ into $[A] = 0 \odot \ell_1 \odot \ldots \odot \ell_k$.

Input clauses

$$1 \leqslant 0 \odot [C_i]. \tag{1}$$

At step
$$i = 1, 2, \dots, s$$
, let $c_i = 1 - 1/(i + 1)$.

$$\frac{A \lor x \quad A \lor \neg x}{A},$$

becomes

$$c_i \odot x \odot [A] \bigoplus c_i \odot \overline{x} \odot [A] \leqslant c_i \odot [A].$$

t's the axiom $x \oplus \overline{x} \leq 0$ multipled by [A]!

Weakening

 $\frac{A}{A \lor \ell},$

becomes

$$c_i \odot [A] \leqslant c_i \odot [A] \odot [\ell]$$

Take the tropical sum of all these (1), (2), (3). They combine nicely!

Daglike Resolution in MP-NSR

Translate $A = \ell_1 \vee \ldots \vee \ell_k$ into $[A] = 0 \odot \ell_1 \odot \ldots \odot \ell_k$.

Input clauses

$$1 \leqslant 0 \odot [C_i]. \tag{1}$$

At step
$$i = 1, 2, ..., s$$
, let $c_i = 1 - 1/(i + 1)$.
Resolution

becomes

$$c_i \odot x \odot [A] \bigoplus c_i \odot \overline{x} \odot [A] \leqslant c_i \odot [A].$$
(2)
It's the axiom $x \oplus \overline{x} \leqslant 0$ multipled by $[A]!$

Weakening

 $\frac{A}{A \lor \ell},$

 $\frac{A \lor x \quad A \lor \neg x}{A},$

becomes

$$c_i \odot [A] \leqslant c_i \odot [A] \odot [\ell]$$

Take the tropical sum of all these (1), (2), (3). They combine nicely!

Daglike Resolution in MP-NSR

Translate $A = \ell_1 \vee \ldots \vee \ell_k$ into $[A] = 0 \odot \ell_1 \odot \ldots \odot \ell_k$.

Input clauses

$$1 \leqslant 0 \odot [C_i]. \tag{1}$$

At step
$$i = 1, 2, ..., s$$
, let $c_i = 1 - 1/(i + 1)$.
Resolution

$$\frac{A \lor x \land A \lor \neg x}{A},$$

becomes

$$c_i \odot x \odot [A] \bigoplus c_i \odot \overline{x} \odot [A] \leqslant c_i \odot [A].$$
(2)

It's the axiom $x \oplus \overline{x} \leq 0$ multipled by [A]!

Weakening

 $\frac{A}{A \lor \ell},$

becomes

$$c_i \odot [A] \leqslant c_i \odot [A] \odot [\ell]. \tag{3}$$

Take the tropical sum of all these (1), (2), (3). They combine nicely!

Lower bounds

Exponential size bound:

MP-NSR refutation size for the binomial $x^{\odot k} = c$ is greater than k

- ▶ Tropical resolution rule (\odot RES) is not derivable in MP-PCR
- ► Non-integer coefficients <u>are</u> needed in MP-NSR

Further research

Two sources of non-treelikeness

- Integer multiplication by a big constant: treelike in LP, daglike in tropics.
- Transitivity of min-plus inequalities: treelike in tropics, daglike in LP.

Tropical resolution.

- ► Separate or simulate Res(LP) in MP-PCR without (⊙RES).
- ► What about treelike versions, what would replace tropical resolution for MP-NSR? Unary coefficients?

MP-NSR vs CP.

- Relations between MP-NSR and CP are unclear, both for unary and binary coefficients, and even for treelike CP.
- Does adding the integer negation (as in Res(CP)) to MP-NSR allow it to simulate at least treelike CP?

Lower bounds for CNFs. Show exponential lower bounds for MP-NSR for CNFs (or small degrees).

(There are more open questions...)

General picture

Pictures are inspired by Proof Complexity Zoo by Marc Vinyals

Treelike Res(LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma

 $S_n := x_1 + \ldots + x_n$. There is a treelike Res(LP) derivation of $S_n \leq 1$ from $x_i + x_j \leq 1$.

Proof.

► $S_{n-1} \leq 1$

 $\vdash S_{n-1} + x_n \leqslant 1 + x_n.$

- ► $x_i + x_n \leq 1$ (for $1 \leq i \leq n-1$)
 - $\vdash S_{n-1} + (n-1)x_n \leqslant n-1$
 - $\vdash S_{n-1} + x_n \leqslant 1 + (n-2)\overline{x}_n.$
- Add both inequalities to $x_n \leq 0 \lor (n-2)\overline{x}_n \leq 0$.

Treelike Res(LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma

 $S_n := x_1 + \ldots + x_n$. There is a treelike Res(LP) derivation of $S_n \leq 1$ from $x_i + x_j \leq 1$.

Proof.

► $S_{n-1} \leq 1$

 $\vdash S_{n-1} + x_n \leqslant 1 + x_n.$

- ► $x_i + x_n \leq 1$ (for $1 \leq i \leq n-1$)
 - $\vdash S_{n-1} + (n-1)x_n \leqslant n-1$

 $\vdash S_{n-1} + x_n \leqslant 1 + (n-2)\overline{x}_n.$

Add both inequalities to $x_n \leq 0 \lor (n-2)\overline{x}_n \leq 0$.

Treelike Res(LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma

 $S_n := x_1 + \ldots + x_n$. There is a treelike Res(LP) derivation of $S_n \leq 1$ from $x_i + x_j \leq 1$.

Proof.

- S_{n-1} ≤ 1
 S_{n-1} + x_n ≤ 1 + x_n.
 x_i + x_n ≤ 1 (for 1 ≤ i ≤ n − 1)
 S_{n-1} + (n − 1)x_n ≤ n − 1
 S_{n-1} + x_n ≤ 1 + (n − 2)x_n.
 - Add both inequalities to $x_n \leq 0 \lor (n-2)\overline{x}_n \leq 0$.

Treelike Res(LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma

 $S_n := x_1 + \ldots + x_n$. There is a treelike Res(LP) derivation of $S_n \leq 1$ from $x_i + x_j \leq 1$.

Proof.

► $S_{n-1} \leq 1$

 $\vdash S_{n-1} + x_n \leqslant 1 + x_n.$

- $x_i + x_n \leq 1$ (for $1 \leq i \leq n-1$)
 - $\vdash S_{n-1} + (n-1)x_n \leqslant n-1$
 - $\vdash S_{n-1} + x_n \leqslant 1 + (n-2)\overline{x}_n.$
- Add both inequalities to $x_n \leq 0 \lor (n-2)\overline{x}_n \leq 0$.

Switching to tropical Nullstellensatz (or treelike MP-PCR).

Lemma

 $S_n := x_1 \odot \ldots \odot x_n$. There is a treelike MP-PCR derivation of $S_n \leq 1$ from $x_i \odot x_j \leq 1$.

Proof.

- ► $S_{n-1} \leq 1$
 - $\vdash S_{n-1} \odot x_n \leqslant 1 \odot x_n.$
- $x_i \odot x_n \leq 1$ (for $1 \leq i \leq n-1$) + $S_{n-1} \odot x_n^{n-1} \leq n-1$ + $S_{n-1} \odot x_n \leq 1 \odot \overline{x}_n^{n-2}$.
- ► Take the tropical sum $S_{n-1} \odot x_n \leq (1 \odot x_n) \bigoplus (1 \odot \overline{x}_n^{n-2})$ and substitute $(1 \odot x_n) \bigoplus (1 \odot \overline{x}_n^{n-2}) \leq 1$

Now it's a treelike MP-PCR refutation.

Some technicalities are needed for $x \oplus \overline{x}^{n-2} \leq 0$ and to make the proof static.