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Crash-Introduction to Propositional Proof Complexity

For those who missed Albert’s tutorial, [Cook, Reckhow 1979], [Tseitin 1968], and next 1000 papers

» We are interested in the length of (shortest) proofs in various proof systems.
» We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for
some other co-NP-complete language):

=3Iy, xa, .., %, €{0,1} D(xq,xa,. .., Xn)
—_——

quantifier-free formula in CNF
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For those who missed Albert’s tutorial, [Cook, Reckhow 1979], [Tseitin 1968], and next 1000 papers

» We are interested in the length of (shortest) proofs in various proof systems.
» We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for
some other co-NP-complete language):
=3Iy, xa, .., %, €{0,1} D(xq,xa,. .., Xn)
—_——

quantifier-free formula in CNF

> A proof system is a polynomial-time deterministic verification algorithm V(®, 7):

® € UNSAT — thereis a proof m such that V(®,7) =1
® ¢ UNSAT — for every candidate proof k, V(®,k) =0
» A well-known proof system: Resolution, a proof is a derivation of the empty clause (false)
from the input clauses using the rule
AV x BV Xx
AV B

» Typical statements:
> A specific proof system II has no polynomial-size proofs for some formulas {®,}.
» System IIs polynomially simulates system IIw
(IIw-proofs can be rewritten as IIs-proofs with at most polynomial increase in size).

» System IIs has polynomial-size proofs for some specific formulas {®,} while system IIy has none,, .



Good old LP systems

Axioms x; > 0, 1 —x; > 0. Clause \/; ¢; is translated to >, ¢; > 1.
Cutting Planes (CP) [W.Cook, Coullard, Turdn] based on Gomory-Chvatal cuts
f1>0 f2>0 Z,ca,-x,-—d}O

> 0),
arh +asfy 20 (a1,02 2 0) Yo;aixi—[d/c] =0

(c,a;,d € Z).
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Resolution over Cutting Planes (Res (CP)) [Krajicek]
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oafi+asfh >0V T (a1, 02 2 0) (+RES)
Yicaxi—d=0VT
Zia,-x,-—[d/c] 20 v I

(c,ai,d € Z).

TS0V S0 (NEG-INT)

Resolution over Linear Programming (Res(LP)) [H, Kojevnikov]

i>0VvI fH>0VTD
=0 +RES
a1ﬂ+027c220 v I (Oél,Oéz ) ( )

x—150 V —x>0 (x is a variable). (NEG-BOOL)
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Good old LP systems

Facts:

» Exponential lower bound for CP star* for unary coefficients
[Pudlak] following [Krajicek]| for CP*
treelike proofs: used twice, derived twice
» Quasipolynomial simulation of treelike Res(CP*) in CP
[Fleming et al.]

» Exponential lower bound for treelike Res(CP)
[Glaser, Pfetsch]

» (Daglike) Res(LP*) =Res (CP*)
[H, Kojevnikov]

Open:

» Exponential lower bounds for (daglike, not treelike!) Res(LP*)?
Res (CP)is more popular, but it may be stronger

16-33



Tropical (min-plus) arithmetic: A more algebraic version of V, <

Min-plus arithmetic over Q.:

a® b =min(a, b), a®b=a+b
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Tropical (min-plus) arithmetic: A more algebraic version of V, <

Min-plus arithmetic over Q.:

a® b =min(a, b), a®b=a+b
Tropical monomial:
m=xf1®x§2®...®x,‘jk (> dixi)

Tropical term: t=coOm, ceQ (m+c)

The empty monomial (term), co plays the role of zero:

00
Tropical polynomial:
pP=tLDtrD... Dty (min(ty, ..., tm))
Min-plus inequality: p1 < po
In the usual terms (for linear functions L;, L}):
min(Ly,...,Ly) < min(L],..., L))
or
L<Ll v Le<l, v ... vV Lp<L (for every j)
J J J 1624



Tropical proof systems

Input system of min-plus inequalities: f; < g1, L < g, .., fm < &m-

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii]
Multiply f; < g; by polynomials and take the sum:

Priop<Peonp

so that for every monomial (including o0), its coefficient on the left is > than on the right
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Input system of min-plus inequalities: f; < g1, L < g, .., fm < &m-

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii].
Multiply f; < g; by polynomials and take the sum:

Priop<Peonp

so that for every monomial (including oo), its coefficient on the left is > than on the right.
1®X®y@%<0®x®y@—% mln(x—|—y—|—1,2) min(x + y, — 1)

Min-Plus Polynomial Calculus (MP-PC).
Do it step by step.
» Take the tropical sum &.
> Multiply by a term.
» Transitivity of <.
» Thus compose an MP-NS-like inequality.

Tropical resolution rule:
tdf <0 t'@f<
(toth)ef<O

0
, where t,t' are terms. (®RES)
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MP-PCR, MP-NSR: dual 0/1 variables encoding x,x

Axioms: xOXx =1, xHx=0

MP-PCR+(®RES)

Separation: Th. 22 (PHP)
Simulation: Th. 20

Important: there is no equivalence of MP-PC to Res(LP) without (®RES), with some evidence.

16-42



Daglike Resolution in MP-NSR

Translate A=/ V ... V 4 into [A]| =000 O...0 .

Input clauses
1<00[G). (D)
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Daglike Resolution in MP-NSR

Translate A=0; V ... V4 into [A| =000 O...0 .
Input clauses

1<00[C). (1)
Atstepi=1,2,...,s, let =1—-1/(i+1).

Resolution
AV x AV —x

A )

becomes
xOAI®  xolA< (AL (2)
It's the axiom x & X < 0 multipled by [A]!
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Daglike Resolution in MP-NSR

Translate A=/ V ... V 4 into [A]| =000 O...0 .

Input clauses

1<00[C)

Atstepi=1,2,...,s, let =1—-1/(i+1).

Resolution

Weakening

AV x AV —x
A b

becomes

C,'@X@[A] @C/@)_(@[A] SC/@[A].

It's the axiom x & X < 0 multipled by [A]!

AV 0
becomes
GOA<qo[AGM.

Take the tropical sum of all these (1), (2), (3). They combine nicely!

(1)
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» Exponential size bound:

MP-NSR refutation size for the binomial x®% = c is greater than k

» Tropical resolution rule (®RES) is not derivable in MP-PCR

» Non-integer coefficients are needed in MP-NSR
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Further research

Two sources of non-treelikeness

» Integer multiplication by a big constant: treelike in LP, daglike in tropics.
» Transitivity of min-plus inequalities: treelike in tropics, daglike in LP.

Tropical resolution.

> Separate or simulate Res (LP) in MP-PCR without (©ORES).
» What about treelike versions, what would replace tropical resolution for MP-NSR?

Unary coefficients?

MP-NSR vs CP.

» Relations between MP-NSR and CP are unclear, both for unary and binary
coefficients, and even for treelike CP.

» Does adding the integer negation (as in Res(CP)) to MP-NSR allow it to
simulate at least treelike CP?

Lower bounds for CNFs. Show exponential lower bounds for MP-NSR for CNFs (or small degrees).

(There are more open questions...)
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General picture

treelike MP-PCR+((®RES)

treelike MP-PCR

’
’

treelike CP

Pictures are inspired by Proof Complexity Zoo by Marc Vinyals

16:52



PHP in treelike Res(LP) and MP-NSR

Treelike Res (LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma

Spi=x1+ ...+ xp.
There is a treelike Res(LP) derivation of S, < 1 from x; + x; < 1.

> Snfl <1

FS,_1+Fx, <1+ x,.
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PHP in treelike Res(LP) and MP-NSR

Treelike Res (LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma

Spi=x1+ ...+ xp.
There is a treelike Res(LP) derivation of S, < 1 from x; + x; < 1.

Proof.
> Snfl < 1

FS,_1+Fx, <1+ x,.

> xi+x, <1 (for1<i<n—1)
FSpoi+(n—1Dx, <n-—1
FSho1+x, <1+ (n—2)x,.

» Add both inequalities to  x, <0 V (n—2)x, < 0.

It does not use full (+RES), one premise does not use the disjunction = Switch to MP-PCR.
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PHP in treelike Res(LP) and MP-NSR

Switching to tropical Nullstellensatz (or treelike MP-PCR).

Lemma

S5, =x10...0 Xx,.
There is a treelike MP-PCR derivation of S, < 1 from x; ©® x; < 1.

> S5, 1<1
FSn—1 O Xxp < 1O Xp.

P i Ox, <1 (for1<i<n—1)
FSp1Ox™1<n-1
FS10x <1OX) 2

> Take the tropical sum S,—1 ©x, < (10 x,) B (1 ® 2)
and substitute 1ox) B (1ox1?)<1 O

Now it's a treelike MP-PCR refutation.
Some technicalities are needed for x & X"2 < 0 and to make the proof static.
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