
Tropical proof systems

Yaroslav Alekseev1 Dima Grigoriev2 Edward A. Hirsch3

STACS 2025, Jena, Germany
March 4, 2025

1The Technion.
2CNRS, Université de Lille.
3Ariel University.

16:30



Crash-Introduction to Propositional Proof Complexity
For those who missed Albert’s tutorial, [Cook, Reckhow 1979], [Tseitin 1968], and next 1000 papers

I We are interested in the length of (shortest) proofs in various proof systems.
I We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for

some other co-NP-complete language):
¬ ∃x1, x2, . . . , xn ∈ {0, 1} Φ(x1, x2, . . . , xn)︸ ︷︷ ︸

quantifier-free formula in CNF

I A proof system is a polynomial-time deterministic verification algorithm V (Φ, π):
Φ ∈ UNSAT =⇒ there is a proof π such that V (Φ, π) = 1

Φ /∈ UNSAT =⇒ for every candidate proof κ, V (Φ, κ) = 0

I A well-known proof system: Resolution, a proof is a derivation of the empty clause (false)
from the input clauses using the rule

A ∨ x B ∨ x
A ∨ B

I Typical statements:
I A specific proof system Π has no polynomial-size proofs for some formulas {Φn}.
I System ΠS polynomially simulates system ΠW

(ΠW -proofs can be rewritten as ΠS-proofs with at most polynomial increase in size).
I System ΠS has polynomial-size proofs for some specific formulas {Φn} while system ΠW has none.16:30



Crash-Introduction to Propositional Proof Complexity
For those who missed Albert’s tutorial, [Cook, Reckhow 1979], [Tseitin 1968], and next 1000 papers

I We are interested in the length of (shortest) proofs in various proof systems.
I We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for

some other co-NP-complete language):
¬ ∃x1, x2, . . . , xn ∈ {0, 1} Φ(x1, x2, . . . , xn)︸ ︷︷ ︸

quantifier-free formula in CNF

I A proof system is a polynomial-time deterministic verification algorithm V (Φ, π):
Φ ∈ UNSAT =⇒ there is a proof π such that V (Φ, π) = 1

Φ /∈ UNSAT =⇒ for every candidate proof κ, V (Φ, κ) = 0

I A well-known proof system: Resolution, a proof is a derivation of the empty clause (false)
from the input clauses using the rule

A ∨ x B ∨ x
A ∨ B

I Typical statements:
I A specific proof system Π has no polynomial-size proofs for some formulas {Φn}.
I System ΠS polynomially simulates system ΠW

(ΠW -proofs can be rewritten as ΠS-proofs with at most polynomial increase in size).
I System ΠS has polynomial-size proofs for some specific formulas {Φn} while system ΠW has none.16:30



Crash-Introduction to Propositional Proof Complexity
For those who missed Albert’s tutorial, [Cook, Reckhow 1979], [Tseitin 1968], and next 1000 papers

I We are interested in the length of (shortest) proofs in various proof systems.
I We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for

some other co-NP-complete language):
¬ ∃x1, x2, . . . , xn ∈ {0, 1} Φ(x1, x2, . . . , xn)︸ ︷︷ ︸

quantifier-free formula in CNF

I A proof system is a polynomial-time deterministic verification algorithm V (Φ, π):
Φ ∈ UNSAT =⇒ there is a proof π such that V (Φ, π) = 1

Φ /∈ UNSAT =⇒ for every candidate proof κ, V (Φ, κ) = 0

I A well-known proof system: Resolution, a proof is a derivation of the empty clause (false)
from the input clauses using the rule

A ∨ x B ∨ x
A ∨ B

I Typical statements:
I A specific proof system Π has no polynomial-size proofs for some formulas {Φn}.
I System ΠS polynomially simulates system ΠW

(ΠW -proofs can be rewritten as ΠS-proofs with at most polynomial increase in size).
I System ΠS has polynomial-size proofs for some specific formulas {Φn} while system ΠW has none.16:30



Crash-Introduction to Propositional Proof Complexity
For those who missed Albert’s tutorial, [Cook, Reckhow 1979], [Tseitin 1968], and next 1000 papers

I We are interested in the length of (shortest) proofs in various proof systems.
I We typically consider proofs of unsatisfiability of Boolean formulas in CNF (or proofs for

some other co-NP-complete language):
¬ ∃x1, x2, . . . , xn ∈ {0, 1} Φ(x1, x2, . . . , xn)︸ ︷︷ ︸

quantifier-free formula in CNF

I A proof system is a polynomial-time deterministic verification algorithm V (Φ, π):
Φ ∈ UNSAT =⇒ there is a proof π such that V (Φ, π) = 1

Φ /∈ UNSAT =⇒ for every candidate proof κ, V (Φ, κ) = 0

I A well-known proof system: Resolution, a proof is a derivation of the empty clause (false)
from the input clauses using the rule

A ∨ x B ∨ x
A ∨ B

I Typical statements:
I A specific proof system Π has no polynomial-size proofs for some formulas {Φn}.
I System ΠS polynomially simulates system ΠW

(ΠW -proofs can be rewritten as ΠS-proofs with at most polynomial increase in size).
I System ΠS has polynomial-size proofs for some specific formulas {Φn} while system ΠW has none.16:30



Good old LP systems
Axioms xi > 0, 1− xi > 0. Clause

∨
i `i is translated to

∑
i `i > 1.

Cutting Planes (CP) [W.Cook, Coullard, Turán] based on Gomory-Chvátal cuts
f1 > 0 f2 > 0

α1f1 + α2f2 > 0
(α1, α2 > 0),

∑
i caixi − d > 0∑

i aixi − dd/ce > 0
(c, ai , d ∈ Z).

Resolution over Cutting Planes (Res(CP)) [Krajíček]
f1 > 0 ∨ Γ f2 > 0 ∨ Γ

α1f1 + α2f2 > 0 ∨ Γ
(α1, α2 > 0) (+RES)∑

i caixi − d > 0 ∨ Γ∑
i aixi − dd/ce > 0 ∨ Γ

(c, ai , d ∈ Z).

—
f − 1 > 0 ∨ −f > 0

. (NEG-INT)

Resolution over Linear Programming (Res(LP)) [H, Kojevnikov]
f1 > 0 ∨ Γ f2 > 0 ∨ Γ

α1f1 + α2f2 > 0 ∨ Γ
(α1, α2 > 0) (+RES)

—
x − 1 > 0 ∨ −x > 0

(x is a variable). (NEG-BOOL)
16:31



Good old LP systems
Axioms xi > 0, 1− xi > 0. Clause

∨
i `i is translated to

∑
i `i > 1.

Cutting Planes (CP) [W.Cook, Coullard, Turán] based on Gomory-Chvátal cuts
f1 > 0 f2 > 0

α1f1 + α2f2 > 0
(α1, α2 > 0),

∑
i caixi − d > 0∑

i aixi − dd/ce > 0
(c, ai , d ∈ Z).

Resolution over Cutting Planes (Res(CP)) [Krajíček]
f1 > 0 ∨ Γ f2 > 0 ∨ Γ

α1f1 + α2f2 > 0 ∨ Γ
(α1, α2 > 0) (+RES)∑

i caixi − d > 0 ∨ Γ∑
i aixi − dd/ce > 0 ∨ Γ

(c, ai , d ∈ Z).

—
f − 1 > 0 ∨ −f > 0

. (NEG-INT)

Resolution over Linear Programming (Res(LP)) [H, Kojevnikov]
f1 > 0 ∨ Γ f2 > 0 ∨ Γ

α1f1 + α2f2 > 0 ∨ Γ
(α1, α2 > 0) (+RES)

—
x − 1 > 0 ∨ −x > 0

(x is a variable). (NEG-BOOL)
16:31



Good old LP systems
Axioms xi > 0, 1− xi > 0. Clause

∨
i `i is translated to

∑
i `i > 1.

Cutting Planes (CP) [W.Cook, Coullard, Turán] based on Gomory-Chvátal cuts
f1 > 0 f2 > 0

α1f1 + α2f2 > 0
(α1, α2 > 0),

∑
i caixi − d > 0∑

i aixi − dd/ce > 0
(c, ai , d ∈ Z).

Resolution over Cutting Planes (Res(CP)) [Krajíček]
f1 > 0 ∨ Γ f2 > 0 ∨ Γ

α1f1 + α2f2 > 0 ∨ Γ
(α1, α2 > 0) (+RES)∑

i caixi − d > 0 ∨ Γ∑
i aixi − dd/ce > 0 ∨ Γ

(c, ai , d ∈ Z).

—
f − 1 > 0 ∨ −f > 0

. (NEG-INT)

Resolution over Linear Programming (Res(LP)) [H, Kojevnikov]
f1 > 0 ∨ Γ f2 > 0 ∨ Γ

α1f1 + α2f2 > 0 ∨ Γ
(α1, α2 > 0) (+RES)

—
x − 1 > 0 ∨ −x > 0

(x is a variable). (NEG-BOOL)
16:31



Good old LP systems

Facts:
I Exponential lower bound for CP

[Pudlák] following [Krajíček] for CP∗
star* for unary coefficients

I Quasipolynomial simulation of treelike Res(CP∗)
treelike proofs: used twice, derived twice

in CP
[Fleming et al.]

I Exponential lower bound for treelike Res(CP)
[Gläser, Pfetsch]

I (Daglike) Res(LP∗)=Res(CP∗)
[H, Kojevnikov]

Open:
I Exponential lower bounds for (daglike, not treelike!) Res(LP∗)?

Res(CP)is more popular, but it may be stronger
16:33



Tropical (min-plus) arithmetic: A more algebraic version of ∨,666
Min-plus arithmetic over Q∞:

a ⊕ b = min(a, b), a � b = a + b
Tropical monomial:

m = xd1
1 � xd2

2 � . . .� xdk
k (

∑
dixi)

Tropical term: t = c � m, c ∈ Q (m + c)

The empty monomial (term), ∞ plays the role of zero:
∞

Tropical polynomial:
p = t1 ⊕ t2 ⊕ . . .⊕ tm (min(t1, . . . , tm))

Min-plus inequality: p1 6 p2

In the usual terms (for linear functions Li , L′
j):

min(L1, . . . , Lm) 6 min(L′
1, . . . , L′

s)

or
L1 6 L′

j ∨ L2 6 L′
j ∨ . . . ∨ Lm 6 L′

j (for every j)
16:34



Tropical (min-plus) arithmetic: A more algebraic version of ∨,666
Min-plus arithmetic over Q∞:

a ⊕ b = min(a, b), a � b = a + b
Tropical monomial:

m = xd1
1 � xd2

2 � . . .� xdk
k (

∑
dixi)

Tropical term: t = c � m, c ∈ Q (m + c)

The empty monomial (term), ∞ plays the role of zero:
∞

Tropical polynomial:
p = t1 ⊕ t2 ⊕ . . .⊕ tm (min(t1, . . . , tm))

Min-plus inequality: p1 6 p2

In the usual terms (for linear functions Li , L′
j):

min(L1, . . . , Lm) 6 min(L′
1, . . . , L′

s)

or
L1 6 L′

j ∨ L2 6 L′
j ∨ . . . ∨ Lm 6 L′

j (for every j)
16:34



Tropical (min-plus) arithmetic: A more algebraic version of ∨,666
Min-plus arithmetic over Q∞:

a ⊕ b = min(a, b), a � b = a + b
Tropical monomial:

m = xd1
1 � xd2

2 � . . .� xdk
k (

∑
dixi)

Tropical term: t = c � m, c ∈ Q (m + c)

The empty monomial (term), ∞ plays the role of zero:
∞

Tropical polynomial:
p = t1 ⊕ t2 ⊕ . . .⊕ tm (min(t1, . . . , tm))

Min-plus inequality: p1 6 p2

In the usual terms (for linear functions Li , L′
j):

min(L1, . . . , Lm) 6 min(L′
1, . . . , L′

s)

or
L1 6 L′

j ∨ L2 6 L′
j ∨ . . . ∨ Lm 6 L′

j (for every j)
16:34



Tropical (min-plus) arithmetic: A more algebraic version of ∨,666
Min-plus arithmetic over Q∞:

a ⊕ b = min(a, b), a � b = a + b
Tropical monomial:

m = xd1
1 � xd2

2 � . . .� xdk
k (

∑
dixi)

Tropical term: t = c � m, c ∈ Q (m + c)

The empty monomial (term), ∞ plays the role of zero:
∞

Tropical polynomial:
p = t1 ⊕ t2 ⊕ . . .⊕ tm (min(t1, . . . , tm))

Min-plus inequality: p1 6 p2

In the usual terms (for linear functions Li , L′
j):

min(L1, . . . , Lm) 6 min(L′
1, . . . , L′

s)

or
L1 6 L′

j ∨ L2 6 L′
j ∨ . . . ∨ Lm 6 L′

j (for every j)
16:34



Tropical (min-plus) arithmetic: A more algebraic version of ∨,666
Min-plus arithmetic over Q∞:

a ⊕ b = min(a, b), a � b = a + b
Tropical monomial:

m = xd1
1 � xd2

2 � . . .� xdk
k (

∑
dixi)

Tropical term: t = c � m, c ∈ Q (m + c)

The empty monomial (term), ∞ plays the role of zero:
∞

Tropical polynomial:
p = t1 ⊕ t2 ⊕ . . .⊕ tm (min(t1, . . . , tm))

Min-plus inequality: p1 6 p2

In the usual terms (for linear functions Li , L′
j):

min(L1, . . . , Lm) 6 min(L′
1, . . . , L′

s)

or
L1 6 L′

j ∨ L2 6 L′
j ∨ . . . ∨ Lm 6 L′

j (for every j)
16:34



Tropical proof systems
Input system of min-plus inequalities: f1 6 g1, f2 6 g2, . . ., fm 6 gm.

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii].
Multiply fi 6 gi by polynomials and take the sum:⊕

i
fi � pi 6

⊕
i

gi � pi

so that for every monomial (including ∞), its coefficient on the left is > than on the right.
1� x � y ⊕ 1

2 6 0� x � y ⊕ − 1
2 min(x + y + 1, 1

2 ) 6 min(x + y ,− 1
2 )

Min-Plus Polynomial Calculus (MP-PC).
Do it step by step.
I Take the tropical sum ⊕.
I Multiply by a term.
I Transitivity of 6.
I Thus compose an MP-NS-like inequality.

Tropical resolution rule:
t ⊕ f 6 0 t′ ⊕ f 6 0

(t � t′)⊕ f 6 0
, where t, t′ are terms. (�RES)

16:37



Tropical proof systems
Input system of min-plus inequalities: f1 6 g1, f2 6 g2, . . ., fm 6 gm.

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii].
Multiply fi 6 gi by polynomials and take the sum:⊕

i
fi � pi 6

⊕
i

gi � pi

so that for every monomial (including ∞), its coefficient on the left is > than on the right.
1� x � y ⊕ 1

2 6 0� x � y ⊕ − 1
2 min(x + y + 1, 1

2 ) 6 min(x + y ,− 1
2 )

Min-Plus Polynomial Calculus (MP-PC).
Do it step by step.
I Take the tropical sum ⊕.
I Multiply by a term.
I Transitivity of 6.
I Thus compose an MP-NS-like inequality.

Tropical resolution rule:
t ⊕ f 6 0 t′ ⊕ f 6 0

(t � t′)⊕ f 6 0
, where t, t′ are terms. (�RES)

16:37



Tropical proof systems
Input system of min-plus inequalities: f1 6 g1, f2 6 g2, . . ., fm 6 gm.

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii].
Multiply fi 6 gi by polynomials and take the sum:⊕

i
fi � pi 6

⊕
i

gi � pi

so that for every monomial (including ∞), its coefficient on the left is > than on the right.
1� x � y ⊕ 1

2 6 0� x � y ⊕ − 1
2 min(x + y + 1, 1

2 ) 6 min(x + y ,− 1
2 )

Min-Plus Polynomial Calculus (MP-PC).
Do it step by step.
I Take the tropical sum ⊕.
I Multiply by a term.
I Transitivity of 6.
I Thus compose an MP-NS-like inequality.

Tropical resolution rule:
t ⊕ f 6 0 t′ ⊕ f 6 0

(t � t′)⊕ f 6 0
, where t, t′ are terms. (�RES)

16:37



Tropical proof systems
Input system of min-plus inequalities: f1 6 g1, f2 6 g2, . . ., fm 6 gm.

Min-Plus Nullstellensatz (MP-NS) — complete by [Grigoriev, Podolskii].
Multiply fi 6 gi by polynomials and take the sum:⊕

i
fi � pi 6

⊕
i

gi � pi

so that for every monomial (including ∞), its coefficient on the left is > than on the right.
1� x � y ⊕ 1

2 6 0� x � y ⊕ − 1
2 min(x + y + 1, 1

2 ) 6 min(x + y ,− 1
2 )

Min-Plus Polynomial Calculus (MP-PC).
Do it step by step.
I Take the tropical sum ⊕.
I Multiply by a term.
I Transitivity of 6.
I Thus compose an MP-NS-like inequality.

Tropical resolution rule:
t ⊕ f 6 0 t′ ⊕ f 6 0

(t � t′)⊕ f 6 0
, where t, t′ are terms. (�RES)

16:37



General picture

MP-PCR, MP-NSR: dual 0/1 variables encoding x , x
Axioms: x � x = 1, x ⊕ x = 0

Res(CP)

Res(LP)

Resolution

treelike Res(CP)

CP

MP-PCR+(�RES)

MP-PCRtreelike MP-PCR+(�RES)

treelike MP-PCR MP-NSR

Simulation: Th. 20
Separation: Th. 22 (PHP)

Th. 23

Th. 21

Important: there is no equivalence of MP-PC to Res(LP) without (�RES), with some evidence.

16:42



Daglike Resolution in MP-NSR

Translate A = `1 ∨ . . . ∨ `k into [A] = 0� `1 � . . .� `k .

Input clauses
1 6 0� [Ci ]. (1)

At step i = 1, 2, . . . , s, let ci = 1− 1/(i + 1).

Resolution
A ∨ x A ∨ ¬x

A ,

becomes
ci � x � [A] ⊕ ci � x � [A] 6 ci � [A]. (2)

It’s the axiom x ⊕ x 6 0 multipled by [A]!
Weakening

A
A ∨ `

,

becomes
ci � [A] 6 ci � [A]� [`]. (3)

Take the tropical sum of all these (1), (2), (3). They combine nicely!
16:46



Daglike Resolution in MP-NSR

Translate A = `1 ∨ . . . ∨ `k into [A] = 0� `1 � . . .� `k .

Input clauses
1 6 0� [Ci ]. (1)

At step i = 1, 2, . . . , s, let ci = 1− 1/(i + 1).

Resolution
A ∨ x A ∨ ¬x

A ,

becomes
ci � x � [A] ⊕ ci � x � [A] 6 ci � [A]. (2)

It’s the axiom x ⊕ x 6 0 multipled by [A]!
Weakening

A
A ∨ `

,

becomes
ci � [A] 6 ci � [A]� [`]. (3)

Take the tropical sum of all these (1), (2), (3). They combine nicely!
16:46



Daglike Resolution in MP-NSR

Translate A = `1 ∨ . . . ∨ `k into [A] = 0� `1 � . . .� `k .

Input clauses
1 6 0� [Ci ]. (1)

At step i = 1, 2, . . . , s, let ci = 1− 1/(i + 1).

Resolution
A ∨ x A ∨ ¬x

A ,

becomes
ci � x � [A] ⊕ ci � x � [A] 6 ci � [A]. (2)

It’s the axiom x ⊕ x 6 0 multipled by [A]!
Weakening

A
A ∨ `

,

becomes
ci � [A] 6 ci � [A]� [`]. (3)

Take the tropical sum of all these (1), (2), (3). They combine nicely!
16:46



Lower bounds

I Exponential size bound:
MP-NSR refutation size for the binomial x�k = c is greater than k

I Tropical resolution rule (�RES) is not derivable in MP-PCR

I Non-integer coefficients are needed in MP-NSR

16:48



Further research
Two sources of non-treelikeness

I Integer multiplication by a big constant: treelike in LP, daglike in tropics.
I Transitivity of min-plus inequalities: treelike in tropics, daglike in LP.

Tropical resolution.
I Separate or simulate Res(LP) in MP-PCR without (�RES).
I What about treelike versions, what would replace tropical resolution for MP-NSR?

Unary coefficients?

MP-NSR vs CP.
I Relations between MP-NSR and CP are unclear, both for unary and binary

coefficients, and even for treelike CP.
I Does adding the integer negation (as in Res(CP)) to MP-NSR allow it to

simulate at least treelike CP?

Lower bounds for CNFs. Show exponential lower bounds for MP-NSR for CNFs (or small degrees).

(There are more open questions...)

16:49



General picture

Res(CP)

Res(LP)

treelike Res(CP)

CP

treelike CP

MP-PCR+(�RES)

MP-PCR treelike MP-PCR+(�RES)

treelike MP-PCRMP-NSR

Resolution

Pictures are inspired by Proof Complexity Zoo by Marc Vinyals

16:52



PHP in treelike Res(LP) and MP-NSR
Treelike Res(LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma
Sn := x1 + . . .+ xn.
There is a treelike Res(LP) derivation of Sn 6 1 from xi + xj 6 1.

Proof.
I Sn−1 6 1

` Sn−1 + xn 6 1 + xn.

I xi + xn 6 1 (for 1 6 i 6 n − 1)

` Sn−1 + (n − 1)xn 6 n − 1

` Sn−1 + xn 6 1 + (n − 2)xn.

I Add both inequalities to xn 6 0 ∨ (n − 2)xn 6 0.

It does not use full (+RES), one premise does not use the disjunction ⇒ Switch to MP-PCR.
16:52



PHP in treelike Res(LP) and MP-NSR
Treelike Res(LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma
Sn := x1 + . . .+ xn.
There is a treelike Res(LP) derivation of Sn 6 1 from xi + xj 6 1.

Proof.
I Sn−1 6 1

` Sn−1 + xn 6 1 + xn.

I xi + xn 6 1 (for 1 6 i 6 n − 1)

` Sn−1 + (n − 1)xn 6 n − 1

` Sn−1 + xn 6 1 + (n − 2)xn.

I Add both inequalities to xn 6 0 ∨ (n − 2)xn 6 0.

It does not use full (+RES), one premise does not use the disjunction ⇒ Switch to MP-PCR.
16:52



PHP in treelike Res(LP) and MP-NSR
Treelike Res(LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma
Sn := x1 + . . .+ xn.
There is a treelike Res(LP) derivation of Sn 6 1 from xi + xj 6 1.

Proof.
I Sn−1 6 1

` Sn−1 + xn 6 1 + xn.

I xi + xn 6 1 (for 1 6 i 6 n − 1)

` Sn−1 + (n − 1)xn 6 n − 1

` Sn−1 + xn 6 1 + (n − 2)xn.

I Add both inequalities to xn 6 0 ∨ (n − 2)xn 6 0.

It does not use full (+RES), one premise does not use the disjunction ⇒ Switch to MP-PCR.
16:52



PHP in treelike Res(LP) and MP-NSR
Treelike Res(LP) proof (motivated by the known treelike CP proof, but avoids rounding).

Lemma
Sn := x1 + . . .+ xn.
There is a treelike Res(LP) derivation of Sn 6 1 from xi + xj 6 1.

Proof.
I Sn−1 6 1

` Sn−1 + xn 6 1 + xn.

I xi + xn 6 1 (for 1 6 i 6 n − 1)

` Sn−1 + (n − 1)xn 6 n − 1

` Sn−1 + xn 6 1 + (n − 2)xn.

I Add both inequalities to xn 6 0 ∨ (n − 2)xn 6 0.

It does not use full (+RES), one premise does not use the disjunction ⇒ Switch to MP-PCR.
16:52



PHP in treelike Res(LP) and MP-NSR
Switching to tropical Nullstellensatz (or treelike MP-PCR).

Lemma
Sn := x1 � . . .� xn.
There is a treelike MP-PCR derivation of Sn 6 1 from xi � xj 6 1.

Proof.
I Sn−1 6 1

` Sn−1 � xn 6 1� xn.

I xi � xn 6 1 (for 1 6 i 6 n − 1)

` Sn−1 � xn−1
n 6 n − 1

` Sn−1 � xn 6 1� xn−2
n .

I Take the tropical sum Sn−1 � xn 6 (1� xn) ⊕ (1� xn−2
n )

and substitute (1� xn) ⊕ (1� xn−2
n ) 6 1

Now it’s a treelike MP-PCR refutation.
Some technicalities are needed for x ⊕ xn−2 6 0 and to make the proof static. 16:52


