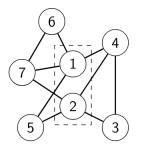
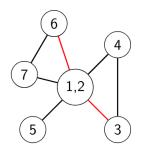
Twin-width One

Hugo Jacob

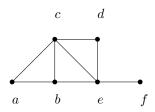
joint work with Jungho Ahn, Noleen Köhler, Christophe Paul, Amadeus Reinald, and Sebastian Wiederrecht

Twin-width





Twin-width



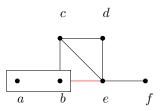
Definition

A *d*-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width



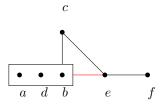
Definition

A *d*-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width



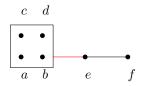
Definition

A *d*-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width



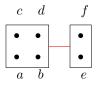
Definition

A *d*-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width



Definition

A *d*-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Twin-width

Definition

A *d*-contraction sequence is a sequence of trigraphs obtained by iterative contraction of pairs of vertices such that the red degree of a vertex is at most d.

Definition

The twin-width of a graph is the minimum d such that the graph admits a d-contraction sequence.

Motivations for twin-width

Pros:

- A partial extension of sparsity theory to hereditary classes with dense graphs.
- Tractability dichotomy for FO in ordered structures.

Cons:

- Computing the twin-width exactly is NP-hard (already for d = 4).
- There is no known approximation algorithm

Small values of twin-width

d = 0: Cographs = P₄-free graphs, linear time recognition.
d ≤ 1: Polynomial time recognition, have a linear structure.

This talk:

Theorem

Twin-width 1 graphs can be recognized in linear time.

Previous algorithm

Main observation:

Lemma

If a graph admits a 1-contraction sequence, it admits a 1-contraction sequence with at most one red edge per trigraph.

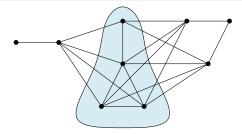
Algorithm sketch:

```
while the graph is not fully contracted:
Guess a pair of vertices to contract.
while there is a single red edge:
    keep contracting greedily on the red edge,
    then contract the red edge.
if there are at least 2 red edges:
    reject.
```

Modules

Definition (Module)

A module M is a subset of vertices such that every vertex not in M is adjacent either to all vertices of M, or no vertex of M.



Modules

Definition (Module)

A module M is a subset of vertices such that every vertex not in M is adjacent either to all vertices of M, or no vertex of M.

A graph is prime if it has only trivial modules.

Observation

A contraction in a module creates red edges only within the module.

Definition (Splitter)

A splitter with respect to M, is a vertex v such that $vx \in E(G), vy \notin E(G)$ for $x, y \in M$. It certifies that M is <u>not</u> a module.

Restriction to trees

A tree has:

- twin-width 0 if and only if it is a star.
- ▶ twin-width at most 1 if and only if it is a caterpillar.
- ▶ twin-width at most 2.



Perfect graphs

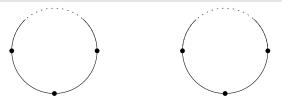
Theorem (Strong perfect graph theorem)

Perfect graphs are exactly the graphs that do not contain odd holes nor odd antiholes as induced subgraphs.

Perfect graphs

Theorem (Strong perfect graph theorem)

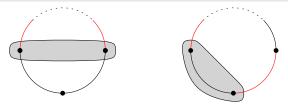
Perfect graphs are exactly the graphs that do not contain odd holes nor odd antiholes as induced subgraphs.



Perfect graphs

Theorem (Strong perfect graph theorem)

Perfect graphs are exactly the graphs that do not contain odd holes nor odd antiholes as induced subgraphs.



Perfect graphs

Theorem (Strong perfect graph theorem)

Perfect graphs are exactly the graphs that do not contain odd holes nor odd antiholes as induced subgraphs.

Observation

Holes and antiholes have twin-width 2.

Perfect graphs

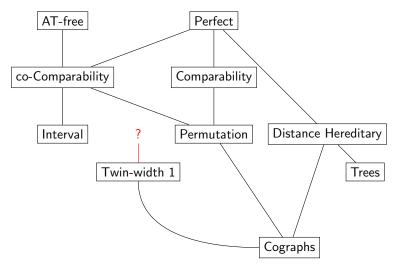
Theorem (Strong perfect graph theorem)

Perfect graphs are exactly the graphs that do not contain odd holes nor odd antiholes as induced subgraphs.

Observation

Holes and antiholes have twin-width 2. In particular, twin-width 1 graphs are perfect.

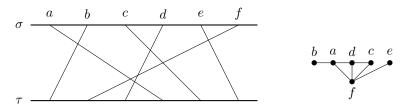
Classes of perfect graphs



Definition

Definition

Given a permutation $\pi : [n] \to [n]$, we define the graph $G[\pi] = ([n], E_{\pi})$ where E_{π} is the set of inversions of π (i.e. $xy \in E_{\pi}$ iff x < y and $\pi(x) > \pi(y)$).



Warm up: Cographs

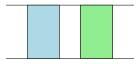
Lemma

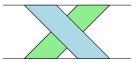
Cographs are permutation graphs.

Induction on the cotree with two cases:

Disjoint union

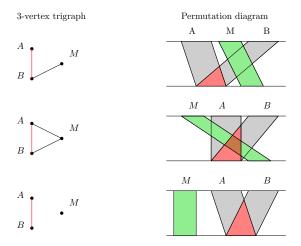
Join





Twin-width 1 graphs are permutation graphs

Induction on the contraction sequence:



Twin-width 1 graphs are permutation graphs

Vertices contracted together are consecutive in the diagram.

Lemma

If G admits a 1-contraction sequence G_n, \ldots, G_1 , then there exists a realiser (σ, τ) such that:

- if x is a vertex of G_i, then vertices of G that are in x form an interval of σ or τ.
- if xy is a red edge of G_i, then vertices of G that are in xy form an interval of σ or τ

Twin-width 1 graphs are permutation graphs

Vertices contracted together are consecutive in the diagram.

Lemma

If G admits a 1-contraction sequence G_n, \ldots, G_1 , then there exists a realiser (σ, τ) such that:

- if x is a vertex of G_i, then vertices of G that are in x form an interval of σ or τ.
- if xy is a red edge of G_i , then vertices of G that are in xy form an interval of σ or τ

Corollary

If the graph is prime, an extremal vertex of the diagram can be contracted last. There are only 4 vertices to try!

Exploiting arbitrary realisers

- For prime graphs, the realiser is unique (up to symmetry) so all realisers have the consecutivity property.
- ▶ For cographs, we can always find a pair of consecutive twins.

Corollary

For any realiser (σ, τ) of a twin-width 1 graph, there exists a 1-contraction sequence that contracts only vertices consecutive in σ or τ .

We do not need to find a specific permutation diagram!

The algorithm

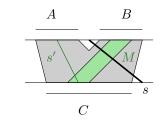
High level description

Algorithm sketch:

Compute permutation diagram, reject when not permutation graph Compute modular decomposition for each prime node of the decomposition: Guess last vertex s to be contracted Try to decompose recursively using s as splitter

The algorithm

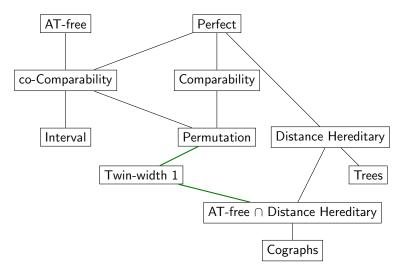
Prime case description



while an endpoint of C is also an endpoint of A or B: Remove it and move indices correspondingly if |A| > 1 and |B| > 1: Reject else if |A| > 1 or |B| > 1: Deduce (M,s') from (A,B) Recurse on (M,s') with s' as splitter else: Accept

Conclusion

Our results



Conclusion

Going further

Our results:

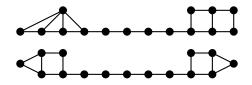
- Linear time recognition algorithm for twin-width 1
- Permutation diagram and consecutivity properties

Open questions:

- Can we recognize twin-width 2 graphs in polynomial time?
- ► Is recognition of twin-width 3 NP-hard?
- Can we approximate twin-width in XP time?
- Can we compute the twin-width of permutation graphs in polynomial time?

Permutation patterns

Some obstructions to twin-width $\boldsymbol{1}$



These obstructions correspond to an infinite family of forbidden patterns for permutations of twin-width 1.

Modular decomposition

Cographs and modular decompositions

Cographs can be characterised in two ways:

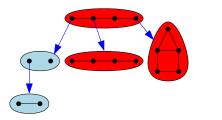
- ► A cograph is a single vertex graph or a graph G obtained from two cographs H₁ and H₂ by either the disjoint union of H₁ and H₂ or adding all edges between H₁ and H₂ (join).
- ► A cograph is a graph that admits a twin-elimination ordering.

Both characterisations follow from a top-down or bottom-up description of the cotree of the cograph

Modular decomposition

Modular decomposition

For every graph, its modular decomposition is a canonical object that recursively decomposes it into prime graphs, disjoint unions, and joins.



Modular decomposition

Modular decomposition and contraction sequence

Lemma

The twin-width of a graph is the maximum twin-width over the prime nodes of its modular decomposition.

Construct the contraction sequence by following the modular decomposition bottom-up. We iteratively contract twins, and contract prime nodes using their optimal sequence.