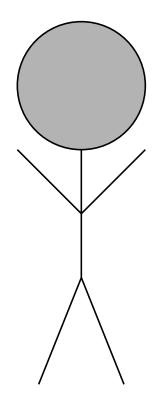
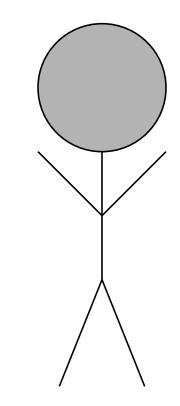
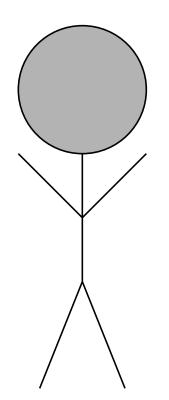
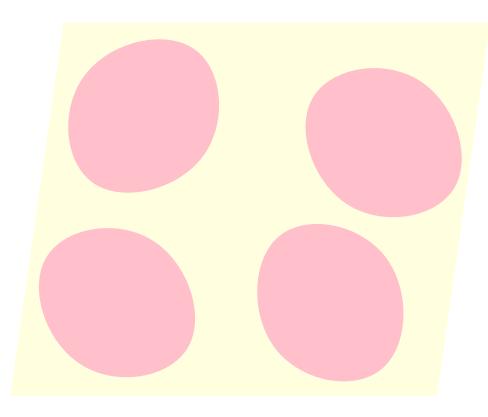
Unfairly Splitting Separable Necklaces

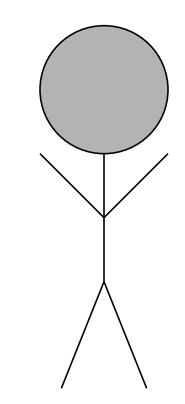
Patrick Schnider, Linus Stalder, and Simon Weber

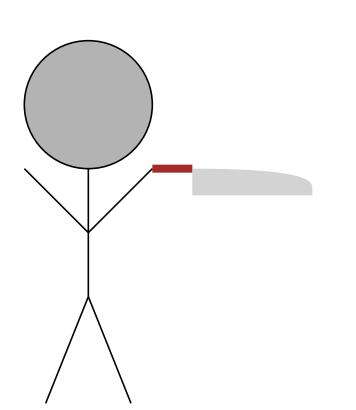


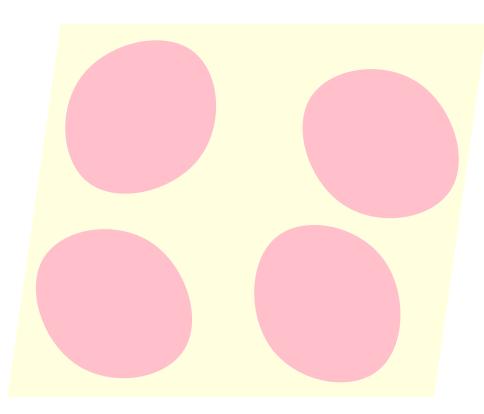


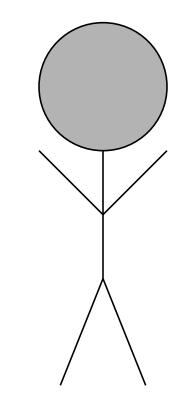


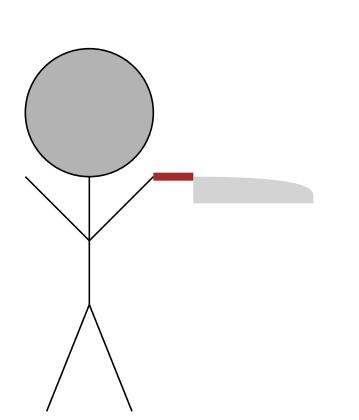


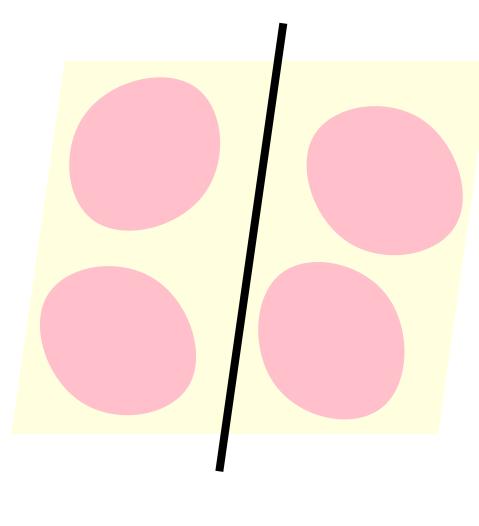


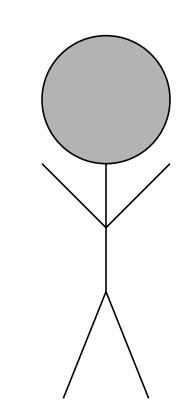


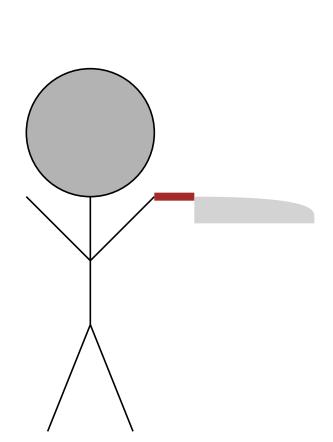








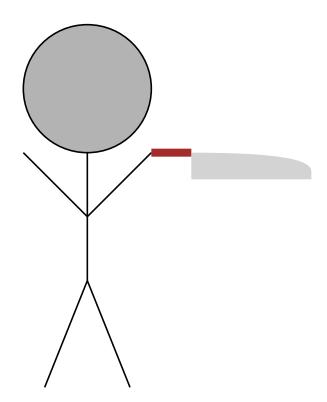


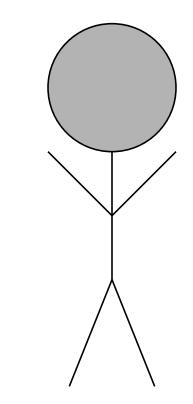




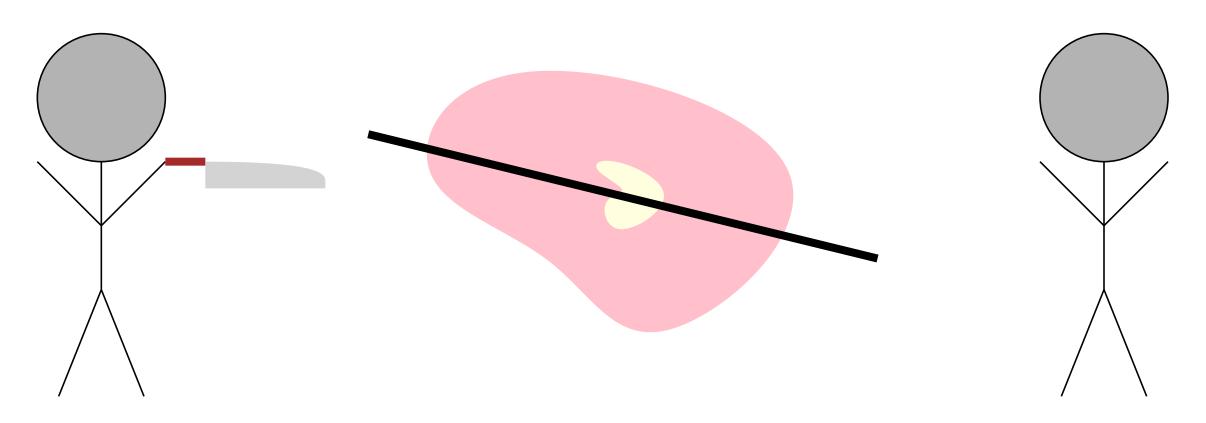


(Discrete) Ham Sandwich Theorem: Given a set of d point sets $P_1, \ldots, P_d \subset \mathbb{R}^d$, there exists a hyperplane h such that each open halfspace bounded by h contains at most half of all points in each P_i .

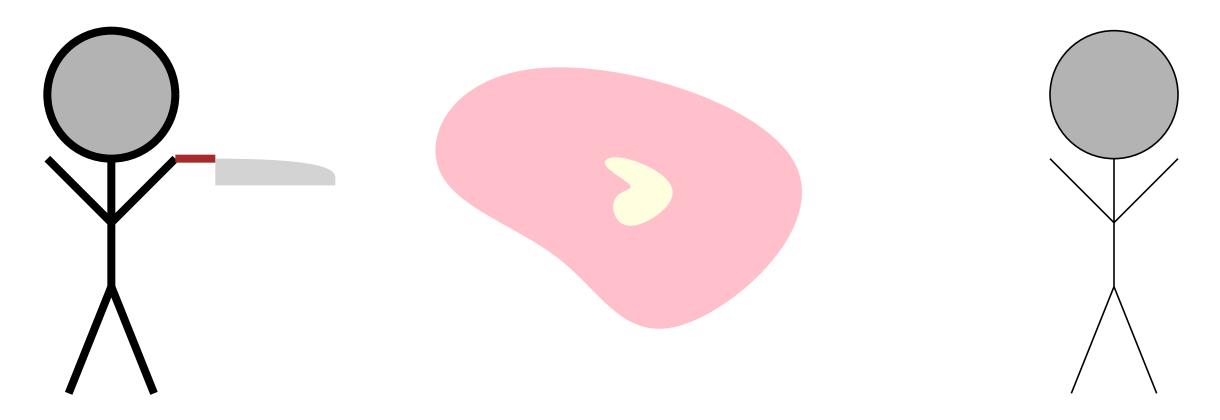




(Discrete) Ham Sandwich Theorem: Given a set of d point sets $P_1, \ldots, P_d \subset \mathbb{R}^d$, there exists a hyperplane h such that each open halfspace bounded by h contains at most half of all points in each P_i .

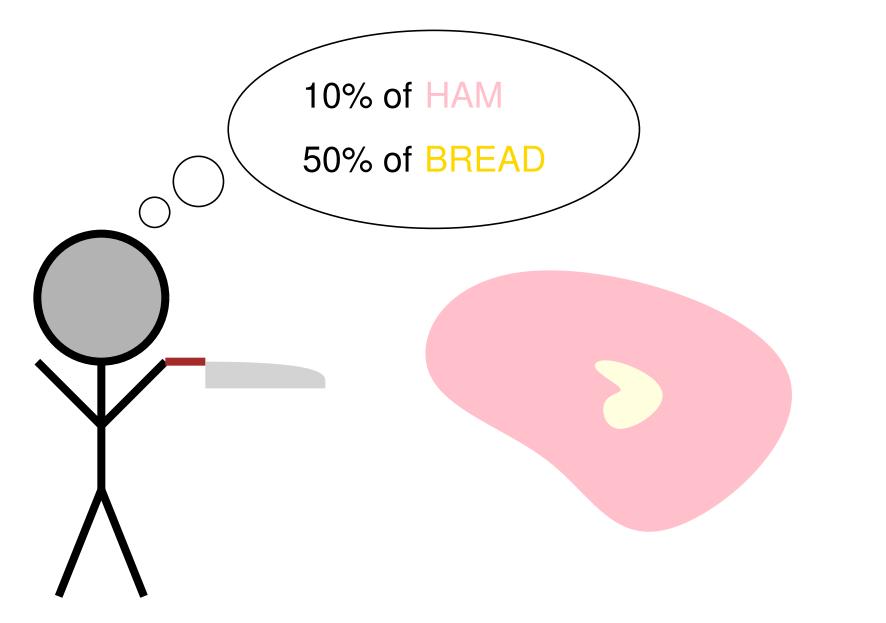


The $\alpha\text{-Ham}$ Sandwich Theorem



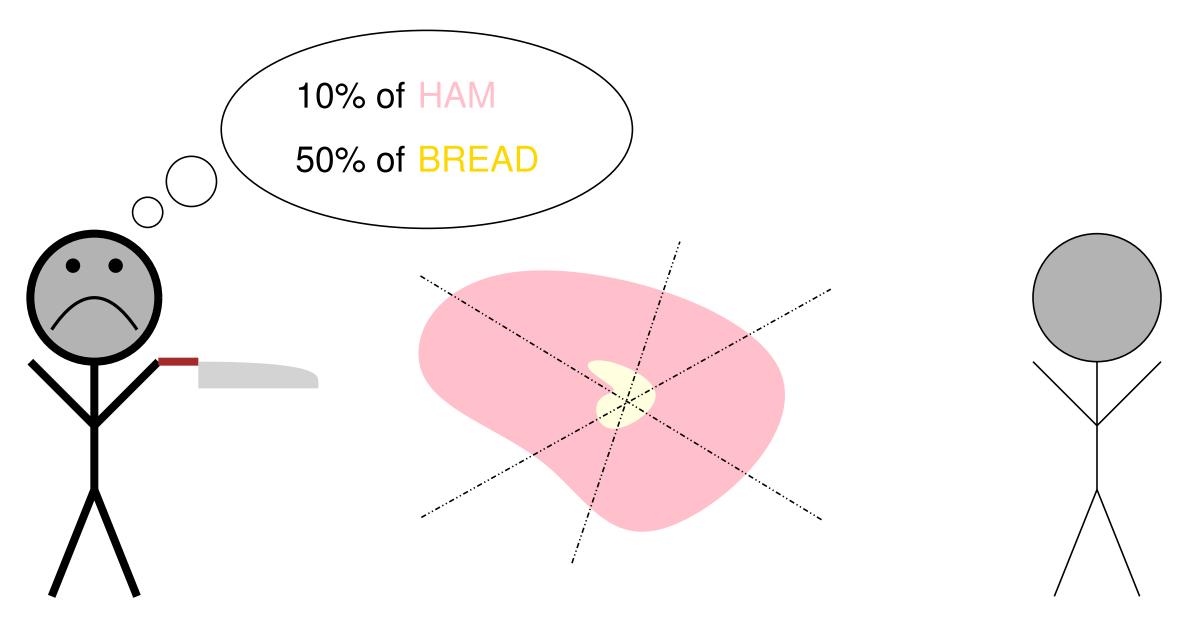
ETH zürich

The $\alpha\text{-Ham}$ Sandwich Theorem



ETH zürich

The $\alpha\text{-Ham}$ Sandwich Theorem



The $\alpha\text{-Ham}$ Sandwich Theorem

(Discrete) α -Ham Sandwich Theorem: Given d point sets $P_1, \ldots, P_d \subset \mathbb{R}^d$ that are *well-separated* and in *weak general position*, and any integers $\alpha_1, \ldots, \alpha_d$ for $0 < \alpha_i \leq |P_i|$, there exists a *unique* hyperplane h such that h goes through exactly one point of each P_i , and $|h^+ \cap P_i| = \alpha_i$.

The $\alpha\text{-Ham}$ Sandwich Theorem

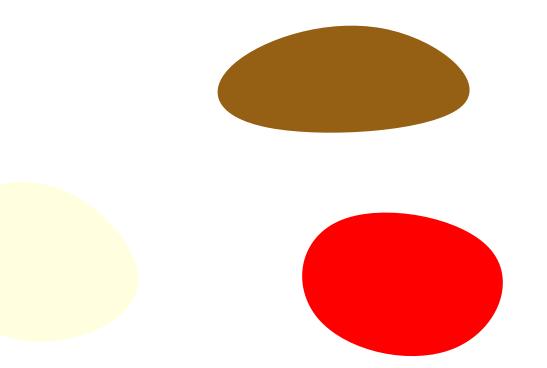
(Discrete) α -Ham Sandwich Theorem: Given d point sets $P_1, \ldots, P_d \subset \mathbb{R}^d$ that are <u>well-separated</u> and in weak general position, and any integers $\alpha_1, \ldots, \alpha_d$ for $0 < \alpha_i \leq |P_i|$, there exists a <u>unique</u> hyperplane h such that h goes through exactly one point of each P_i , and $|h^+ \cap P_i| = \alpha_i$.

Well-Separation

Definition: k point sets $P_1, \ldots, P_k \subset \mathbb{R}^d$ are called *well-separated* if for every non-empty index set $I \subset [k]$, the convex hulls of the two disjoint subfamilies $\bigcup_{i \in I} P_i$ and $\bigcup_{i \in [k] \setminus I} P_i$ can be separated by a hyperplane.

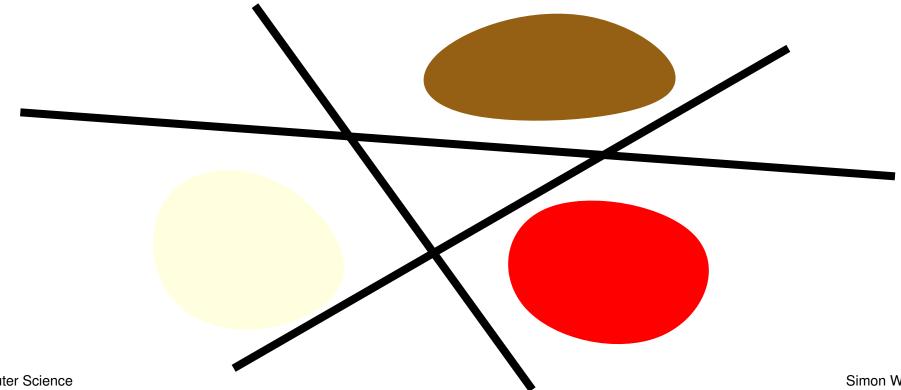
Well-Separation

Definition: k point sets $P_1, \ldots, P_k \subset \mathbb{R}^d$ are called *well-separated* if for every non-empty index set $I \subset [k]$, the convex hulls of the two disjoint subfamilies $\bigcup_{i \in I} P_i$ and $\bigcup_{i \in [k] \setminus I} P_i$ can be separated by a hyperplane.



Well-Separation

Definition: k point sets $P_1, \ldots, P_k \subset \mathbb{R}^d$ are called *well-separated* if for every non-empty index set $I \subset [k]$, the convex hulls of the two disjoint subfamilies $\bigcup_{i \in I} P_i$ and $\bigcup_{i \in [k] \setminus I} P_i$ can be separated by a hyperplane.



Computational Complexity

Theorem [Filos-Ratsikas, Goldberg 2019]: The problem of finding a Ham Sandwich cut is PPA-complete.

Computational Complexity

Theorem [Filos-Ratsikas, Goldberg 2019]: The problem of finding a Ham Sandwich cut is PPA-complete.

Theorem [Chiu, Choudhary, Mulzer 2020]: The problem of finding an α -Ham Sandwich cut is contained in UEOPL.

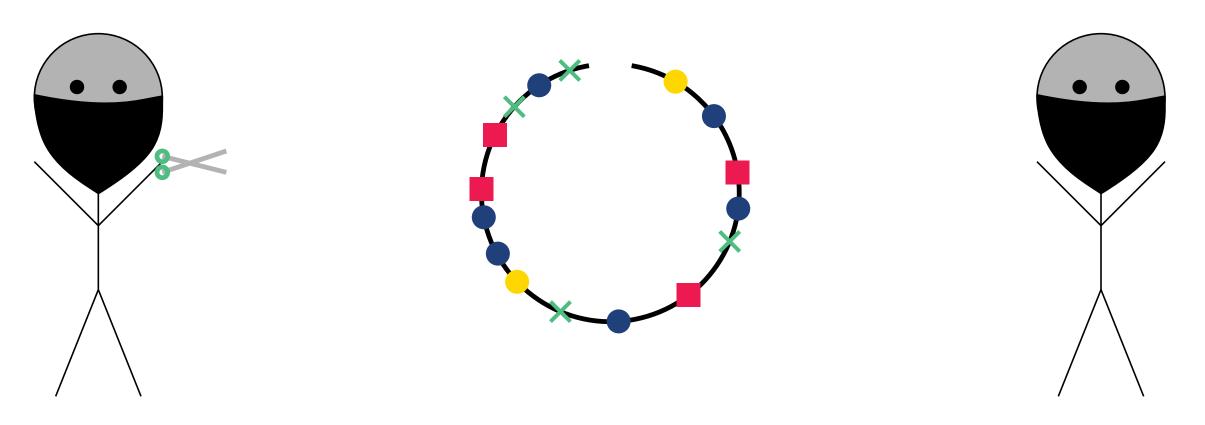
Computational Complexity

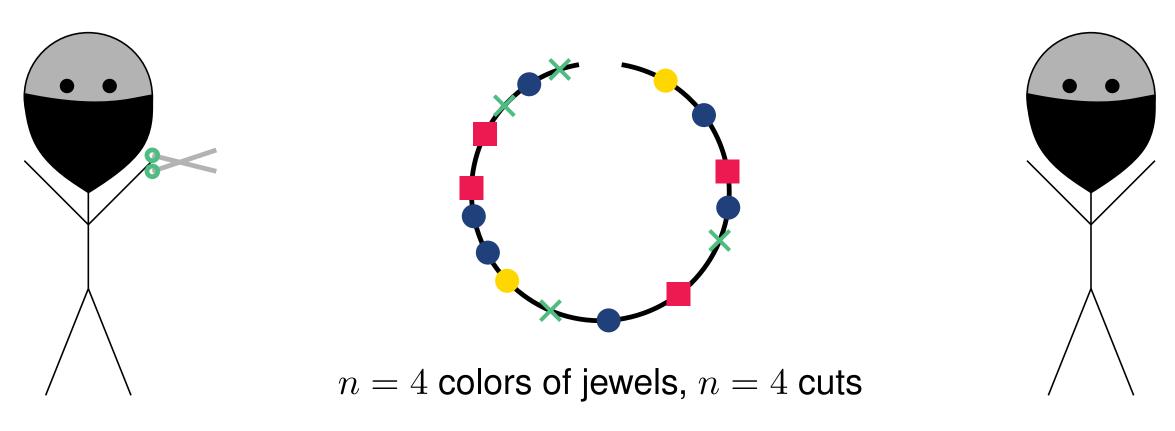
Theorem [Filos-Ratsikas, Goldberg 2019]: The problem of finding a Ham Sandwich cut is PPA-complete.

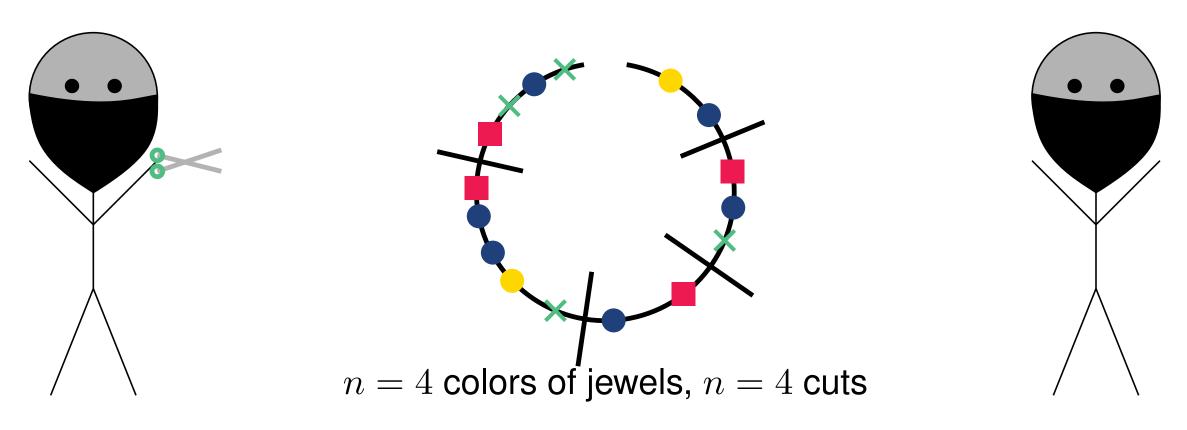
Theorem [Chiu, Choudhary, Mulzer 2020]: The problem of finding an α -Ham Sandwich cut is contained in UEOPL.

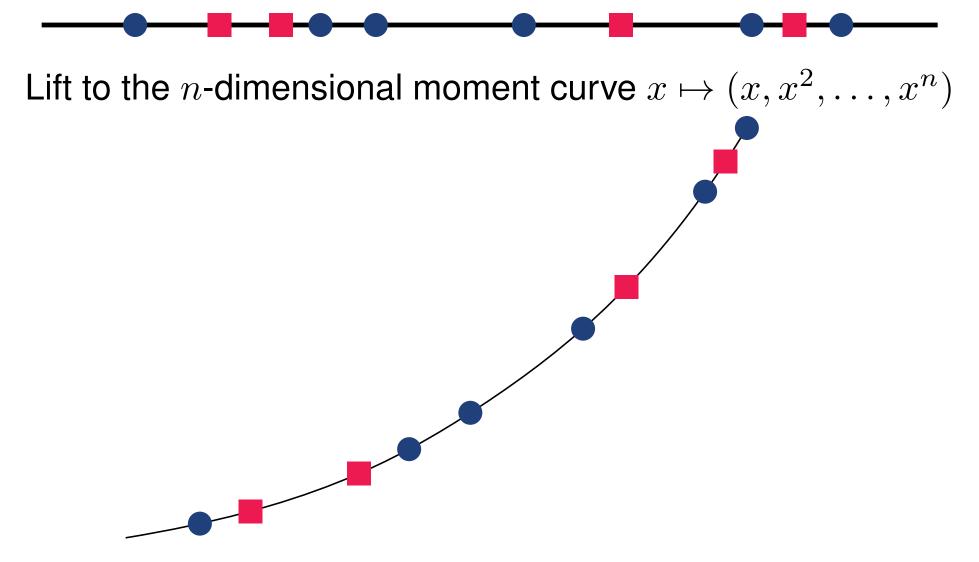
UEOPL \subseteq PPA, conjectured \neq !

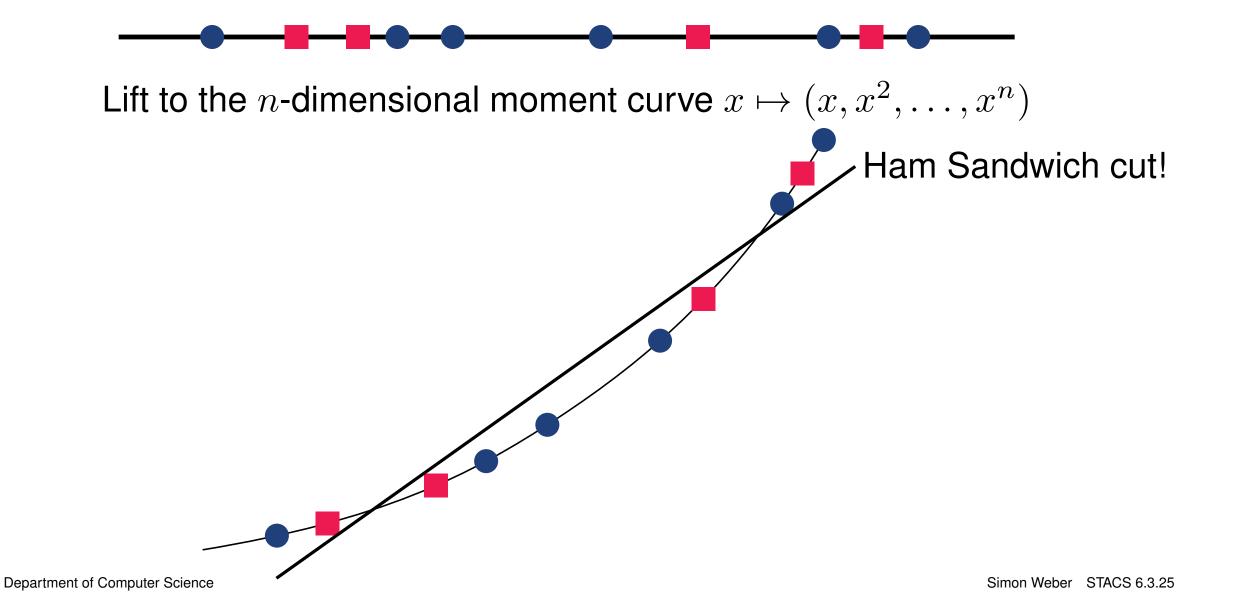
Is α -Ham Sandwich also UEOPL-hard?

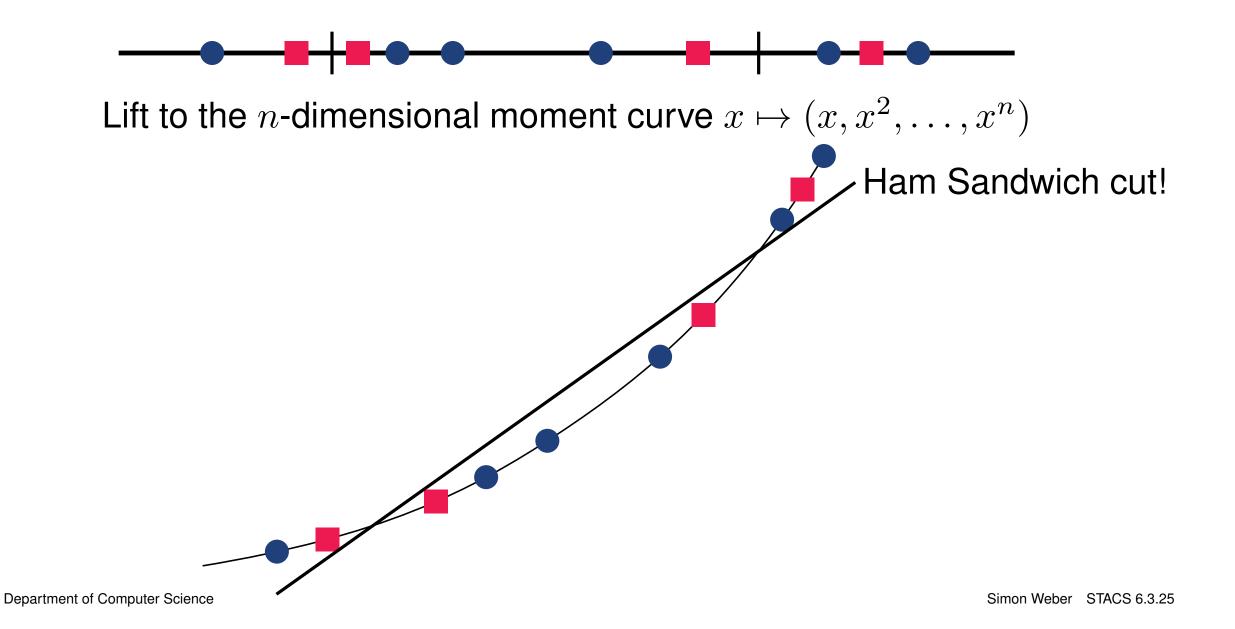












Separable Necklaces

Definition: A necklace with n colors of jewels is called k-separable if any subset $I \subset [n]$ of colors can be separated from $[n] \setminus I$ by at most k cuts.

Separable Necklaces

Definition: A necklace with n colors of jewels is called k-separable if any subset $I \subset [n]$ of colors can be separated from $[n] \setminus I$ by at most k cuts.

Lemma [Borzechowski, Schnider, W., '23]: A necklace with n colors of jewels is n-separable if and only if its lifting to the n-dimensional moment curve is well-separated.

Separable Necklaces

Definition: A necklace with n colors of jewels is called k-separable if any subset $I \subset [n]$ of colors can be separated from $[n] \setminus I$ by at most k cuts.

Lemma [Borzechowski, Schnider, W., '23]: A necklace with n colors of jewels is n-separable if and only if its lifting to the n-dimensional moment curve is well-separated.

Is Necklace Splitting on *n*-separable necklaces UEOPL-hard?

Previous Results

Theorem [BSW, '23]: Fair Necklace Splitting can be solved in time $2^{O(\ell \log \ell)} + O(m^2)$ on every $(n - 1 + \ell)$ -separable necklace with n colors of jewels and m total jewels.

Previous Results

Theorem [BSW, '23]: Fair Necklace Splitting can be solved in time $2^{O(\ell \log \ell)} + O(m^2)$ on every $(n - 1 + \ell)$ -separable necklace with n colors of jewels and m total jewels.

Theorem [BSW, '23]: Given a necklace with n colors of jewels and m total jewels, we can check whether it is $(n - 1 + \ell)$ -separable in time $O(m) + 2^{O(\ell^2)} \cdot n^4$.

Previous Results

Theorem [BSW, '23]: Fair Necklace Splitting can be solved in time $2^{O(\ell \log \ell)} + O(m^2)$ on every $(n - 1 + \ell)$ -separable necklace with n colors of jewels and m total jewels.

Theorem [BSW, '23]: Given a necklace with n colors of jewels and m total jewels, we can check whether it is $(n - 1 + \ell)$ -separable in time $O(m) + 2^{O(\ell^2)} \cdot n^4$.

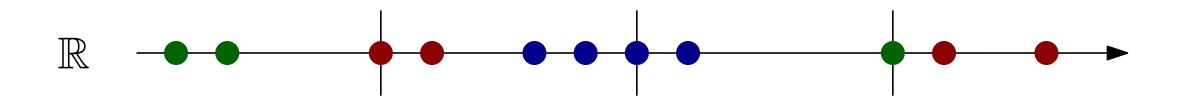
What about *unfair* splitting?

The Unfair Splitting Problem

$\alpha = \begin{pmatrix} 4 & 3 & 1 \end{pmatrix}$

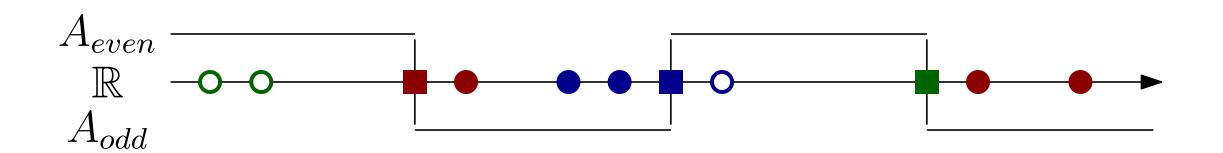
The Unfair Splitting Problem

 $\alpha = (4 \ 3 \ 1)$



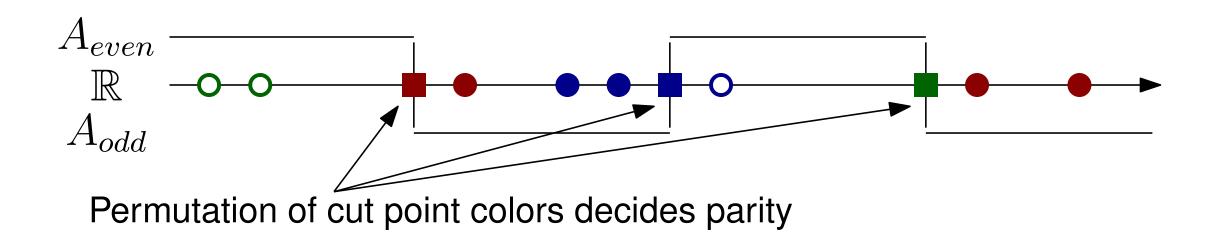
The Unfair Splitting Problem

 $\alpha = \begin{pmatrix} 4 & 3 & 1 \end{pmatrix}$



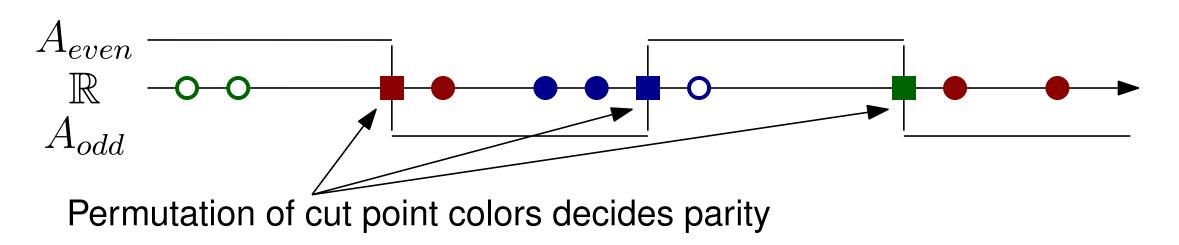
The Unfair Splitting Problem

 $\alpha = \begin{pmatrix} 4 & 3 & 1 \end{pmatrix}$

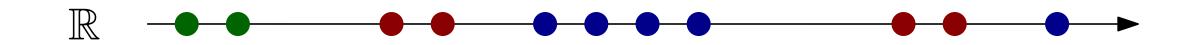


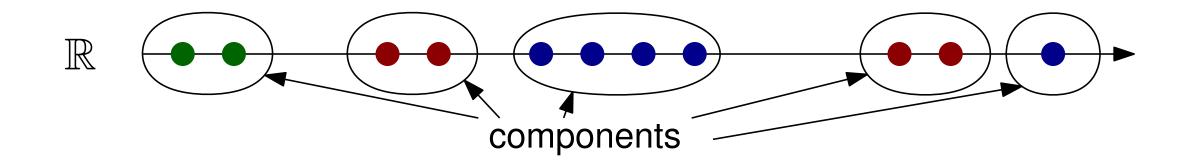
The Unfair Splitting Problem

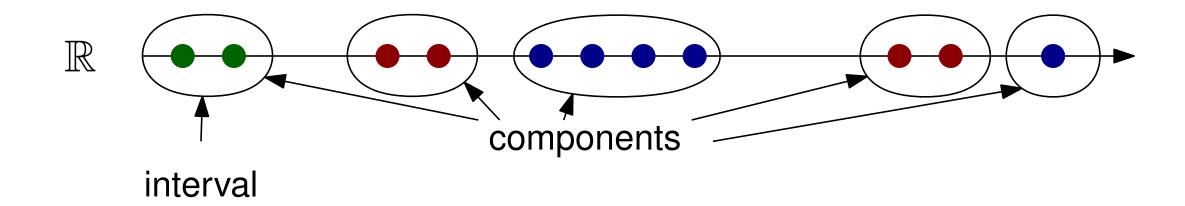
 $\alpha = \begin{pmatrix} 4 & 3 & 1 \end{pmatrix}$

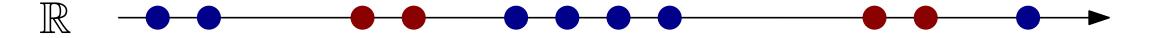


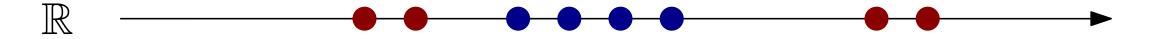
Theorem: Unfair Necklace Splitting can be solved in time $O(n \cdot m)$ on every *n*-separable necklace with *n* colors of jewels and *m* total jewels.

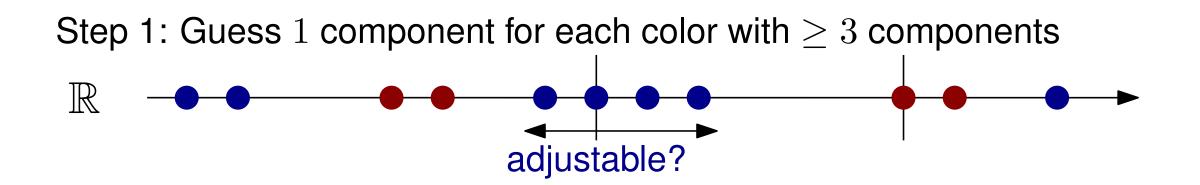








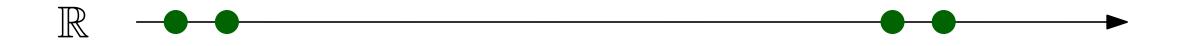




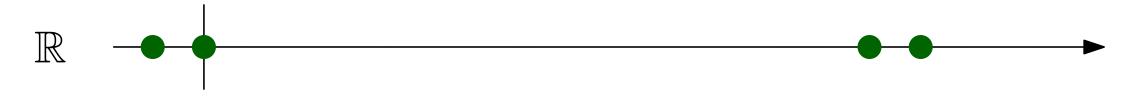
Step 0: Remove neighboring *intervals*

Step 0: Remove neighboring *intervals*

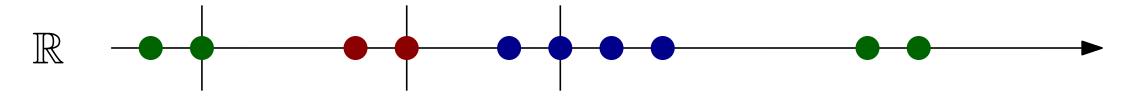
Step 0: Remove neighboring *intervals*



Step 0: Remove neighboring *intervals*



Step 0: Remove neighboring *intervals*

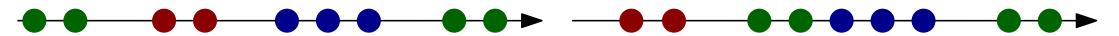


Step 0: Remove neighboring *intervals*

- Step 1: Guess 1 component for each color with ≥ 3 components
- Step 2: Exhaustively apply more reduction rules

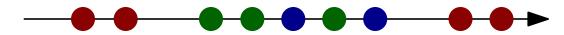
Step 0: Remove neighboring *intervals*

- Step 1: Guess 1 component for each color with ≥ 3 components
- Step 2: Exhaustively apply more reduction rules



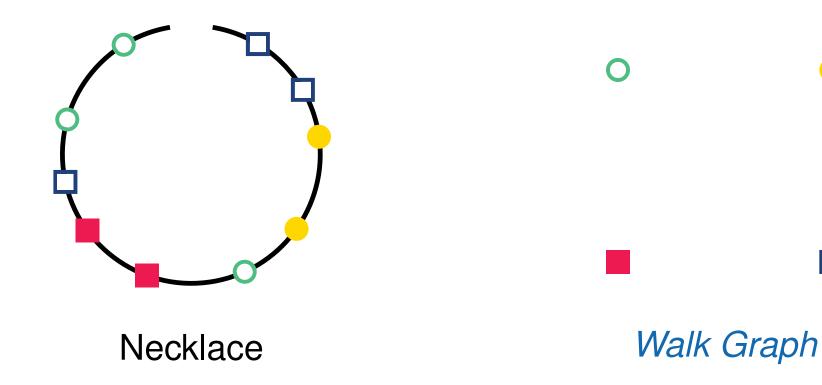
neighboring intervals

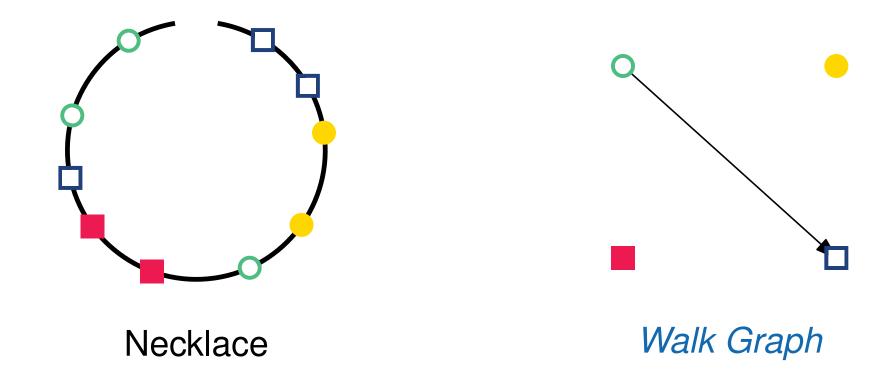
interval at end

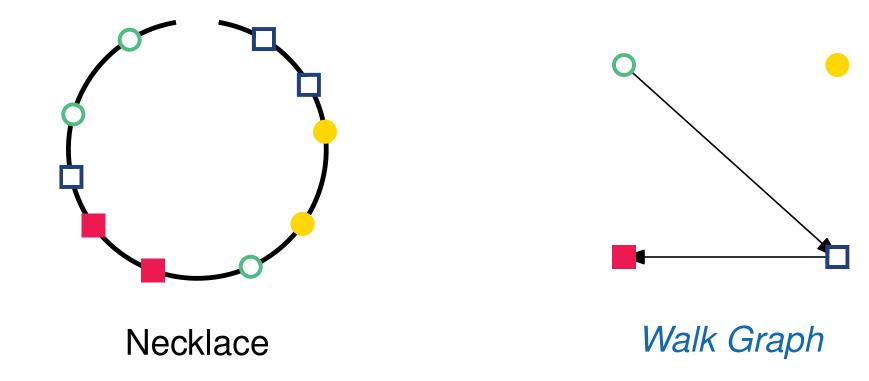


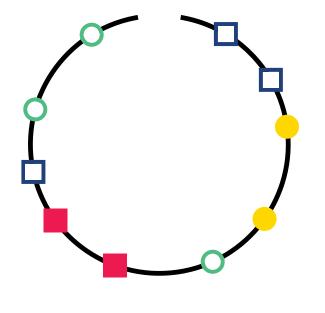
ends are colored same

- Step 0: Remove neighboring *intervals*
- Step 1: Guess 1 component for each color with ≥ 3 components
- Step 2: Exhaustively apply more reduction rules
- Step 3: Solve irreducible necklace using ILP

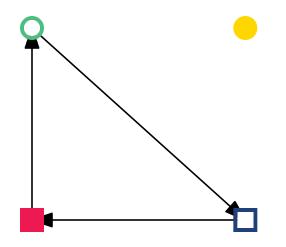


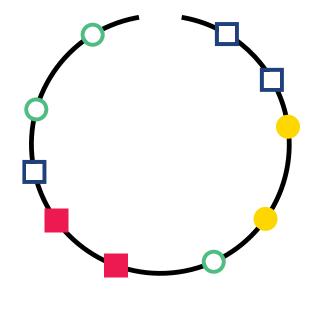




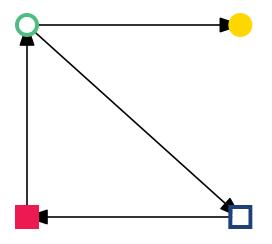


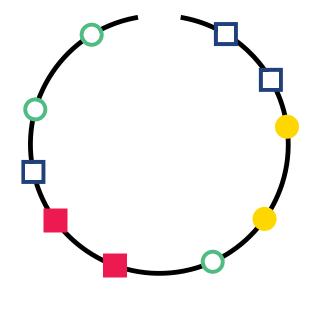
Necklace



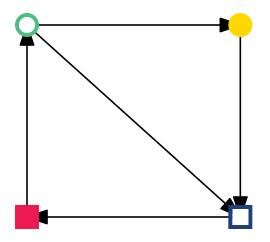


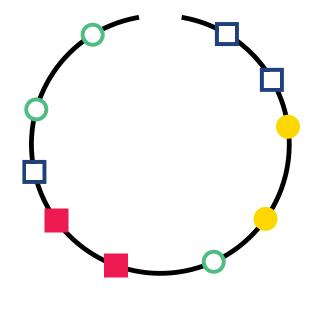
Necklace



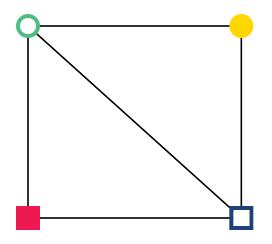


Necklace

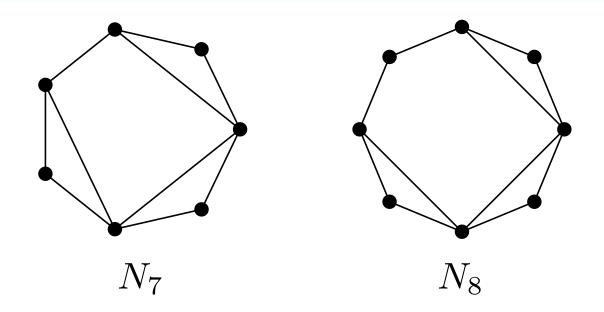




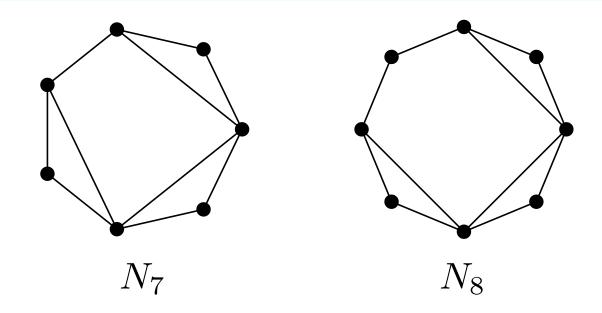
Necklace



Theorem: The walk graph of any irreducible necklace with n colors is isomorphic to the graph N_n .



Theorem: The walk graph of any irreducible necklace with n colors is isomorphic to the graph N_n .



Theorem [Jansen, Kratsch, '15]: A binary ILP is fixed-parameter tractable in the *treewidth* of its *primal graph*.

Contrast: NP-Hardness of Decision

Theorem: It is NP-complete to decide whether any given necklace on n colors has an α -cut for any given vector $\alpha = (\alpha_1, \ldots, \alpha_n)$.

Conclusion

n-separable necklaces are polynomial-time *recognizable*, and splittable both *fairly* as well as *unfairly*.

Conclusion

n-separable necklaces are polynomial-time *recognizable*, and splittable both *fairly* as well as *unfairly*.

A UEOPL-hardness proof of α -Ham Sandwich must therefore use another strategy.

Conclusion

n-separable necklaces are polynomial-time *recognizable*, and splittable both *fairly* as well as *unfairly*.

A UEOPL-hardness proof of α -Ham Sandwich must therefore use another strategy.

Thank you for your attention!