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(Discrete) Ham Sandwich Theorem: Given a set of d point sets
P1, . . . , Pd ⊂ Rd, there exists a hyperplane h such that each open
halfspace bounded by h contains at most half of all points in each Pi.
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The α-Ham Sandwich Theorem

(Discrete) α-Ham Sandwich Theorem:
Given d point sets P1, . . . , Pd ⊂ Rd that are well-separated and in
weak general position, and any integers α1, . . . , αd for 0 < αi ≤ |Pi|,
there exists a unique hyperplane h such that h goes through exactly
one point of each Pi, and |h+ ∩ Pi| = αi.
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Computational Complexity

Theorem [Filos-Ratsikas, Goldberg 2019]: The problem of finding a
Ham Sandwich cut is PPA-complete.

Theorem [Chiu, Choudhary, Mulzer 2020]: The problem of finding an
α-Ham Sandwich cut is contained in UEOPL.

UEOPL ⊆ PPA, conjectured ̸=!

Is α-Ham Sandwich also UEOPL-hard?
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Separable Necklaces

Definition: A necklace with n colors of jewels is called k-separable if
any subset I ⊂ [n] of colors can be separated from [n] \ I by at most
k cuts.

Lemma [Borzechowski, Schnider, W., ’23]: A necklace with n colors
of jewels is n-separable if and only if its lifting to the n-dimensional
moment curve is well-separated.

Is Necklace Splitting on n-separable necklaces UEOPL-hard?



Department of Computer Science Simon Weber STACS 6.3.25

Previous Results

Theorem [BSW, ’23]: Fair Necklace Splitting can be solved in time
2O(ℓ log ℓ) + O(m2) on every (n − 1 + ℓ)-separable necklace with
n colors of jewels and m total jewels.
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Previous Results

Theorem [BSW, ’23]: Fair Necklace Splitting can be solved in time
2O(ℓ log ℓ) + O(m2) on every (n − 1 + ℓ)-separable necklace with
n colors of jewels and m total jewels.

Theorem [BSW, ’23]: Given a necklace with n colors of jewels and m
total jewels, we can check whether it is (n − 1 + ℓ)-separable in time
O(m) + 2O(ℓ2) · n4.

What about unfair splitting?
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The Unfair Splitting Problem

R
Aeven

Aodd

α = (4 3 1 )

Permutation of cut point colors decides parity

Theorem: Unfair Necklace Splitting can be solved in time O(n · m)
on every n-separable necklace with n colors of jewels and m total
jewels.
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Solving Unfair Splitting

Step 1: Guess 1 component for each color with ≥ 3 components

R
adjustable?
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Step 2: Exhaustively apply more reduction rules

neighboring intervals interval at end

ends are colored same
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Solving Unfair Splitting

Step 1: Guess 1 component for each color with ≥ 3 components

Step 0: Remove neighboring intervals

Step 2: Exhaustively apply more reduction rules

Step 3: Solve irreducible necklace using ILP
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Irreducible Necklaces

Theorem: The walk graph of any irreducible necklace with n colors is
isomorphic to the graph Nn.

N7 N8

Theorem [Jansen, Kratsch, ’15]: A binary ILP is fixed-parameter
tractable in the treewidth of its primal graph.
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Contrast: NP-Hardness of Decision

Theorem: It is NP-complete to decide whether any given necklace on
n colors has an α-cut for any given vector α = (α1, . . . , αn).
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Thank you for your attention!


