
Violating Constant Degree Hypothesis Requires
Breaking Symmetry

Piotr Kawałek & Armin Weiß

TU Wien, University of Stuttgart

STACS, 6 March 2025

ERC Synergy Grant POCOCOP (GA 101071674)



Circuit complexity

Language L is in the complexity class P{poly iff there is an infinite
family of circuits (with one output wire)

C1, C2, C3, . . .

such that:
1 Cn has n inputs and accepts (only) words of length n of L
2 Cn is of size Oppolypnqq
3 Cn computes over t0, 1u and is built of gates ^,_,␣.

Fact 1: P Ď P{poly,
Fact 2: NP Ĺ P{poly ùñ P ‰ NP.



Circuit complexity

Language L is in the complexity class P{poly iff there is an infinite
family of circuits (with one output wire)

C1, C2, C3, . . .

such that:
1 Cn has n inputs and accepts (only) words of length n of L
2 Cn is of size Oppolypnqq
3 Cn computes over t0, 1u and is built of gates ^,_,␣.

Fact 1: P Ď P{poly,

Fact 2: NP Ĺ P{poly ùñ P ‰ NP.



Circuit complexity

Language L is in the complexity class P{poly iff there is an infinite
family of circuits (with one output wire)

C1, C2, C3, . . .

such that:
1 Cn has n inputs and accepts (only) words of length n of L
2 Cn is of size Oppolypnqq
3 Cn computes over t0, 1u and is built of gates ^,_,␣.

Fact 1: P Ď P{poly,
Fact 2: NP Ĺ P{poly ùñ P ‰ NP.



AC 0-circuits



Lower bounds we know

Question 1: Can we perform addition modulo 2 with small
bounded-depth AC0-circuits?

Håstad’86: AC0-circuits of height h require size 2Ωpn1{ph´1qq to
compute PARITY.

Note 1: Lower bound perfectly matches the naive contruction.

Note 2: The same lower bound holds if we replace parity with
arbitrary MODm function (by the very same proof).

Dual question: Can we represent Boolean operations like ANDn
with small modulo counting circuits on bounded depth?



Lower bounds we know

Question 1: Can we perform addition modulo 2 with small
bounded-depth AC0-circuits?

Håstad’86: AC0-circuits of height h require size 2Ωpn1{ph´1qq to
compute PARITY.

Note 1: Lower bound perfectly matches the naive contruction.

Note 2: The same lower bound holds if we replace parity with
arbitrary MODm function (by the very same proof).

Dual question: Can we represent Boolean operations like ANDn
with small modulo counting circuits on bounded depth?



Lower bounds we know

Question 1: Can we perform addition modulo 2 with small
bounded-depth AC0-circuits?

Håstad’86: AC0-circuits of height h require size 2Ωpn1{ph´1qq to
compute PARITY.

Note 1: Lower bound perfectly matches the naive contruction.

Note 2: The same lower bound holds if we replace parity with
arbitrary MODm function (by the very same proof).

Dual question: Can we represent Boolean operations like ANDn
with small modulo counting circuits on bounded depth?



Lower bounds we know

Question 1: Can we perform addition modulo 2 with small
bounded-depth AC0-circuits?

Håstad’86: AC0-circuits of height h require size 2Ωpn1{ph´1qq to
compute PARITY.

Note 1: Lower bound perfectly matches the naive contruction.

Note 2: The same lower bound holds if we replace parity with
arbitrary MODm function (by the very same proof).

Dual question: Can we represent Boolean operations like ANDn
with small modulo counting circuits on bounded depth?



CC 0-circuits



Constructions

Fact 1: CChrps-circuits can encode only bounded arity AND.

Fact 2: MODq ˝MODp-circuits can encode any function (for
p ‰ q). ANDn can be constructructed in size Oppnq.

BBR’94: CC3rms-circuits can encode ANDn in size 2Opn1{r q,
where r is the number of prime divisors of m.

Smart recursive application of the above construction gives a
CChrms- representation of ANDn of size

« 2Opn1{ph´1qr q

(Idziak, Kawałek, Krzaczkowski’22, Chapman, Williams’22)



Constructions

Fact 1: CChrps-circuits can encode only bounded arity AND.

Fact 2: MODq ˝MODp-circuits can encode any function (for
p ‰ q). ANDn can be constructructed in size Oppnq.

BBR’94: CC3rms-circuits can encode ANDn in size 2Opn1{r q,
where r is the number of prime divisors of m.

Smart recursive application of the above construction gives a
CChrms- representation of ANDn of size

« 2Opn1{ph´1qr q

(Idziak, Kawałek, Krzaczkowski’22, Chapman, Williams’22)



Constructions

Fact 1: CChrps-circuits can encode only bounded arity AND.

Fact 2: MODq ˝MODp-circuits can encode any function (for
p ‰ q). ANDn can be constructructed in size Oppnq.

BBR’94: CC3rms-circuits can encode ANDn in size 2Opn1{r q,
where r is the number of prime divisors of m.

Smart recursive application of the above construction gives a
CChrms- representation of ANDn of size

« 2Opn1{ph´1qr q

(Idziak, Kawałek, Krzaczkowski’22, Chapman, Williams’22)



Constructions

Fact 1: CChrps-circuits can encode only bounded arity AND.

Fact 2: MODq ˝MODp-circuits can encode any function (for
p ‰ q). ANDn can be constructructed in size Oppnq.

BBR’94: CC3rms-circuits can encode ANDn in size 2Opn1{r q,
where r is the number of prime divisors of m.

Smart recursive application of the above construction gives a
CChrms- representation of ANDn of size

« 2Opn1{ph´1qr q

(Idziak, Kawałek, Krzaczkowski’22, Chapman, Williams’22)



Lower bounds

We know almost nothing! Only slightly superlinear lower bounds
are known (for CChrms-circuit computing ANDn) and only for the
number of wires (Chattopadhyay et al. FOCS’06).

Fact: We know that MODq ˝MODm circuits computing ANDn
need size Ωpcnq (Barrington, Straubing, Thérien’90).

In particular we do not know:
1 much about MOD6 ˝MOD6-circuits,
2 much about MODq¨r ˝MODp-circuits, for 3 different primes

p, q, r ,
3 much about MODq ˝MODp ˝ANDd -circuits.

It is consistent with our knowledge that all this kinds of
circuits can solve NP-complete problems in polynomial size!



Lower bounds

We know almost nothing! Only slightly superlinear lower bounds
are known (for CChrms-circuit computing ANDn) and only for the
number of wires (Chattopadhyay et al. FOCS’06).

Fact: We know that MODq ˝MODm circuits computing ANDn
need size Ωpcnq (Barrington, Straubing, Thérien’90).

In particular we do not know:
1 much about MOD6 ˝MOD6-circuits,
2 much about MODq¨r ˝MODp-circuits, for 3 different primes

p, q, r ,
3 much about MODq ˝MODp ˝ANDd -circuits.

It is consistent with our knowledge that all this kinds of
circuits can solve NP-complete problems in polynomial size!



Lower bounds

We know almost nothing! Only slightly superlinear lower bounds
are known (for CChrms-circuit computing ANDn) and only for the
number of wires (Chattopadhyay et al. FOCS’06).

Fact: We know that MODq ˝MODm circuits computing ANDn
need size Ωpcnq (Barrington, Straubing, Thérien’90).

In particular we do not know:
1 much about MOD6 ˝MOD6-circuits,

2 much about MODq¨r ˝MODp-circuits, for 3 different primes
p, q, r ,

3 much about MODq ˝MODp ˝ANDd -circuits.
It is consistent with our knowledge that all this kinds of
circuits can solve NP-complete problems in polynomial size!



Lower bounds

We know almost nothing! Only slightly superlinear lower bounds
are known (for CChrms-circuit computing ANDn) and only for the
number of wires (Chattopadhyay et al. FOCS’06).

Fact: We know that MODq ˝MODm circuits computing ANDn
need size Ωpcnq (Barrington, Straubing, Thérien’90).

In particular we do not know:
1 much about MOD6 ˝MOD6-circuits,
2 much about MODq¨r ˝MODp-circuits, for 3 different primes

p, q, r ,

3 much about MODq ˝MODp ˝ANDd -circuits.
It is consistent with our knowledge that all this kinds of
circuits can solve NP-complete problems in polynomial size!



Lower bounds

We know almost nothing! Only slightly superlinear lower bounds
are known (for CChrms-circuit computing ANDn) and only for the
number of wires (Chattopadhyay et al. FOCS’06).

Fact: We know that MODq ˝MODm circuits computing ANDn
need size Ωpcnq (Barrington, Straubing, Thérien’90).

In particular we do not know:
1 much about MOD6 ˝MOD6-circuits,
2 much about MODq¨r ˝MODp-circuits, for 3 different primes

p, q, r ,
3 much about MODq ˝MODp ˝ANDd -circuits.

It is consistent with our knowledge that all this kinds of
circuits can solve NP-complete problems in polynomial size!



Lower bounds

We know almost nothing! Only slightly superlinear lower bounds
are known (for CChrms-circuit computing ANDn) and only for the
number of wires (Chattopadhyay et al. FOCS’06).

Fact: We know that MODq ˝MODm circuits computing ANDn
need size Ωpcnq (Barrington, Straubing, Thérien’90).

In particular we do not know:
1 much about MOD6 ˝MOD6-circuits,
2 much about MODq¨r ˝MODp-circuits, for 3 different primes

p, q, r ,
3 much about MODq ˝MODp ˝ANDd -circuits.

It is consistent with our knowledge that all this kinds of
circuits can solve NP-complete problems in polynomial size!



Constant Degree Hypothesis

Conjecture by
Barrington, Straubing, Thérien 1990

There is an absolute constant c ą 0
such that any MODq ˝MODm ˝ANDd

circuit computing ANDn
requires size at least Ωpcnq.

Here: q is a prime number, m is an integer, d is a fixed constant
(i.e. d=2), n is a (large) integer.



Constant Degree Hypothesis

Conjecture by
Barrington, Straubing, Thérien 1990

There is an absolute constant c ą 0
such that any MODq ˝MODp ˝ANDd

circuit computing ANDn
requires size at least Ωpcnq.

Here: q is a prime number, p is a prime, d is a fixed constant (i.e.
d=2), n is a (large) integer.



Polynomial Equivalence Problem

PolEqvpGq - on the input we get an equation, i.e. two
expressions over G

e1px1, . . . , xnq “ e2px1, . . . , xnq

and we want to check that it is an identity, i.e. it is satisfied for all
px1, x2, . . . , xnq P Gn.

Example 1: x ` y “ y ` x and x ` x ` x “ 0 are identities in Z3. .

Example 2: xy “ yx is not an identity in D5.
What about pxyq´1yxzx´1 “ pzxy´1q´1xy?



Polynomial Equivalence Problem

PolEqvpGq - on the input we get an equation, i.e. two
expressions over G

e1px1, . . . , xnq “ e2px1, . . . , xnq

and we want to check that it is an identity, i.e. it is satisfied for all
px1, x2, . . . , xnq P Gn.

Example 1: x ` y “ y ` x and x ` x ` x “ 0 are identities in Z3. .

Example 2: xy “ yx is not an identity in D5.
What about pxyq´1yxzx´1 “ pzxy´1q´1xy?



Polynomial Equivalence Problem

PolEqvpGq - on the input we get an equation, i.e. two
expressions over G

e1px1, . . . , xnq “ e2px1, . . . , xnq

and we want to check that it is an identity, i.e. it is satisfied for all
px1, x2, . . . , xnq P Gn.

Example 1: x ` y “ y ` x and x ` x ` x “ 0 are identities in Z3. .

Example 2: xy “ yx is not an identity in D5.
What about pxyq´1yxzx´1 “ pzxy´1q´1xy?



Relating PolEqv to CDH

Theorem (Idziak, PK, Krzaczkowski, Weiß, ICALP’22)

For a finite group G the problem PolEqvpGq is
1 co-NP-complete when G is nonsolvable,
2 not in P (RP) when G has supernilpotent rank ě 3 assuming

ETH (rETH),
3 in RP when G has supernilpotent rank “ 2 assuming Constant

Degree Hypothesis.

CDH holds iff
PolEqvpGq is in RP for all the groups G
with supernilpotent rank “ 2 (unless rETH fails).



Relating PolEqv to CDH

Theorem (Idziak, PK, Krzaczkowski, Weiß, ICALP’22)

For a finite group G the problem PolEqvpGq is
1 co-NP-complete when G is nonsolvable,
2 not in P (RP) when G has supernilpotent rank ě 3 assuming

ETH (rETH),
3 in RP when G has supernilpotent rank “ 2 assuming Constant

Degree Hypothesis.

CDH holds iff
PolEqvpGq is in RP for all the groups G
with supernilpotent rank “ 2 (unless rETH fails).



Rewriting expressions to circuits

The reason for this 3 cases is:
1 expressions over nonsolvable group can ”interpret” any NC1

circuits, so we get co-NP-complete equivalence here.
2 expressions over supernilpotent rank 3 groups can ”interpret”

some height 3 CC-circuits, which enables subexpotential
encoding of ANDn, and in turn subexpotential encoding of
3-CNF forumlas.

3 expressions over supernilpotent rank 2 groups can be rewritten
to MODq ˝MODm ˝ANDd circuits.



Constant Degree Hypothesis

Conjecture by
Barrington, Straubing, Thérien 1990

There is an absolute constant c ą 0
such that any MODq ˝MODp ˝ANDd

circuit computing ANDn
requires size at least Ωpcnq.

Here: q is a prime number, p is a prime, d is a fixed constant (i.e.
d=2), n is a (large) integer.



Prior work

Grolmusz, Tardos 2000
MODq ˝MODp ˝ANDd - circuit computing ANDn
requires size Ωpcnq for some absolute constant c,
when the number of ANDd gates wired to one MODp gate is
at most opn2{ log nq.

Grolmusz, Tardos 2000; Straubing, Thérien 2000
The only symmetric functions computed by
MODq ˝MODp - circuits of size s have period p ¨ qk ,
where qk P Θplog sq.

Corollary: as ANDn function has no nontrivial periods it must
have a large symmetric representation.



Prior work

Grolmusz, Tardos 2000
MODq ˝MODp ˝ANDd - circuit computing ANDn
requires size Ωpcnq for some absolute constant c,
when the number of ANDd gates wired to one MODp gate is
at most opn2{ log nq.

Grolmusz, Tardos 2000; Straubing, Thérien 2000
The only symmetric functions computed by
MODq ˝MODp - circuits of size s have period p ¨ qk ,
where qk P Θplog sq.

Corollary: as ANDn function has no nontrivial periods it must
have a large symmetric representation.



Prior work

Grolmusz, Tardos 2000
MODq ˝MODp ˝ANDd - circuit computing ANDn
requires size Ωpcnq for some absolute constant c,
when the number of ANDd gates wired to one MODp gate is
at most opn2{ log nq.

Grolmusz, Tardos 2000; Straubing, Thérien 2000
The only symmetric functions computed by
MODq ˝MODp - circuits of size s have period p ¨ qk ,
where qk P Θplog sq.

Corollary: as ANDn function has no nontrivial periods it must
have a large symmetric representation.



Periods of symmetric functions

If function f : t0, 1un ÝÑ t0, 1u is symmetric we can define

f pkq :“ f p1k 0n´kq

period of f is any integer r with 0 ď r ď n ´ 1 and

f pkq “ f pk ` rq

for all k satisfying 0 ď k ď n ´ r .



Constant Degree Hypothesis

Theorem

There is an absolute constant c ą 0
such that any symmetric MODq ˝MODp ˝ANDd

circuit computing ANDn
requires size at least Ωpcnq.

Here: p, q are prime numbers, d is a fixed constant (i.e. d=2), n is
a (large) integer.



Why symmetric?

Two reasons to consider symmetric circuits here:
1 It is natural to believe that optimal representation of a

symmetric function is symmetric (or close to symmetric).

2 Surprising Barrington et. al. construction of CC3rms circuits for
ANDn produces symmetric circuits.



Why symmetric?

Two reasons to consider symmetric circuits here:
1 It is natural to believe that optimal representation of a

symmetric function is symmetric (or close to symmetric).
2 Surprising Barrington et. al. construction of CC3rms circuits for

ANDn produces symmetric circuits.



Symmetric circuits are periodic

PK, Armin Weiß, 2025
Let p and q be primes and n ě 13 and let 1 ď d ď n.
Then any function computed by an n-input symmetric
MODq ˝MODp ˝ANDd circuit of size s ă 2n{9

has a period pkp qkq given that pkp ą d and qkq ą log s ` 1.

Corollary: as ANDn function has no nontrivial periods it must
have a large symmetric representation.

Fact: we provide a construction matching the proven lower
bounds.

Thank you!



Symmetric circuits are periodic

PK, Armin Weiß, 2025
Let p and q be primes and n ě 13 and let 1 ď d ď n.
Then any function computed by an n-input symmetric
MODq ˝MODp ˝ANDd circuit of size s ă 2n{9

has a period pkp qkq given that pkp ą d and qkq ą log s ` 1.

Corollary: as ANDn function has no nontrivial periods it must
have a large symmetric representation.

Fact: we provide a construction matching the proven lower
bounds.

Thank you!



Symmetric circuits are periodic

PK, Armin Weiß, 2025
Let p and q be primes and n ě 13 and let 1 ď d ď n.
Then any function computed by an n-input symmetric
MODq ˝MODp ˝ANDd circuit of size s ă 2n{9

has a period pkp qkq given that pkp ą d and qkq ą log s ` 1.

Corollary: as ANDn function has no nontrivial periods it must
have a large symmetric representation.

Fact: we provide a construction matching the proven lower
bounds.

Thank you!



Symmetric circuits are periodic

PK, Armin Weiß, 2025
Let p and q be primes and n ě 13 and let 1 ď d ď n.
Then any function computed by an n-input symmetric
MODq ˝MODp ˝ANDd circuit of size s ă 2n{9

has a period pkp qkq given that pkp ą d and qkq ą log s ` 1.

Corollary: as ANDn function has no nontrivial periods it must
have a large symmetric representation.

Fact: we provide a construction matching the proven lower
bounds.

Thank you!


