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Circuit complexity

Language L is in the complexity class P/poly iff there is an infinite
family of circuits (with one output wire)
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such that:
@ C, has n inputs and accepts (only) words of length n of L
@ G, is of size O(poly(n))

© C, computes over {0,1} and is built of gates A, v, —.
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such that:

@ C, has n inputs and accepts (only) words of length n of L
@ G, is of size O(poly(n))

© C, computes over {0,1} and is built of gates A, v, —.

Fact 1: P < P/poly,
Fact 2: NP < P/poly — P # NP.
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Question 1: Can we perform addition modulo 2 with small
bounded-depth ACP-circuits?

Hastad’86: AC -circuits of height h require size 2Q(n D) 4
compute PARITY.

Note 1: Lower bound perfectly matches the naive contruction.

Note 2: The same lower bound holds if we replace parity with
arbitrary MOD,, function (by the very same proof).

Dual question: Can we represent Boolean operations like AND,
with small modulo counting circuits on bounded depth?
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Constructions

Fact 1: CCp[p]-circuits can encode only bounded arity AND.

Fact 2: MOD, o MOD-circuits can encode any function (for
p # q). AND,, can be constructructed in size O(p").

BBR'94: CC3[m]-circuits can encode AND,, in size 20(n"),
where r is the number of prime divisors of m.

Smart recursive application of the above construction gives a
CCp[m]- representation of AND,, of size

~ 2o(n1/(h—1)r)

(ldziak, Kawatek, Krzaczkowski'22, Chapman, Williams'22)
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We know almost nothing! Only slightly superlinear lower bounds
are known (for CCj[m]-circuit computing AND,,) and only for the
number of wires (Chattopadhyay et al. FOCS'06).

Fact: We know that MOD, o MODy, circuits computing AND,,
need size Q(c") (Barrington, Straubing, Thérien'90).

In particular we do not know:
@ much about MODg o MO Dg-circuits,
@ much about MODy., o MOD p-circuits, for 3 different primes
p.q.r,
© much about MODg 0o MOD, o AND 4-circuits.

It is consistent with our knowledge that all this kinds of
circuits can solve NP-complete problems in polynomial size!
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Polynomial Equivalence Problem

PoLEQV(G) - on the input we get an equation, i.e. two
expressions over G

e1(x1, ..., xn) = ex(x1,...,Xn)

and we want to check that it is an identity, i.e. it is satisfied for all
(x1,%2,...,%n) € G".

Example 1: x+y = y + x and x + x + x = 0 are identities in Z3. .

Example 2: xy = yx is not an identity in Ds.
What about (xy) tyxzx™1 = (zxy~1)"Ixy?
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Theorem (ldziak, PK, Krzaczkowski, Weil3, ICALP’22)

For a finite group G the problem POLEQV(G) is
© co-NP-complete when G is nonsolvable,

@ not in P (RP) when G has supernilpotent rank > 3 assuming
ETH (rfETH),

© in RP when G has supernilpotent rank = 2 assuming Constant
Degree Hypothesis.



Relating PoLEQV to CDH

Theorem (ldziak, PK, Krzaczkowski, Weil3, ICALP’22)

For a finite group G the problem POLEQV(G) is
© co-NP-complete when G is nonsolvable,

@ not in P (RP) when G has supernilpotent rank > 3 assuming
ETH (rfETH),

© in RP when G has supernilpotent rank = 2 assuming Constant
Degree Hypothesis.

CDH holds iff
PoLEQV(G) is in RP for all the groups G
with supernilpotent rank = 2 (unless rETH fails).



Rewriting expressions to circuits

The reason for this 3 cases is:

@ expressions over nonsolvable group can "interpret” any NC!
circuits, so we get co-NP-complete equivalence here.

@ expressions over supernilpotent rank 3 groups can "interpret”
some height 3 CC-circuits, which enables subexpotential
encoding of AND,, and in turn subexpotential encoding of
3-CNF forumlas.

© expressions over supernilpotent rank 2 groups can be rewritten
to MODg o MOD,, o ANDy circuits.
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Periods of symmetric functions

If function f : {0,1}" — {0, 1} is symmetric we can define
f(k) := f(1K 0"F)
period of f is any integer r with 0 <r < n-—1 and
f(ky="Ff(k+r)

for all k satisfying 0 < k< n-—r.



Constant Degree Hypothesis

Theorem

There is an absolute constant ¢ > 0
such that any symmetric MOD,; o MOD, o ANDy
circuit computing AND,,
requires size at least Q(c").

Here: p, g are prime numbers, d is a fixed constant (i.e.d=2), nis
a (large) integer.
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Two reasons to consider symmetric circuits here:
@ It is natural to believe that optimal representation of a
symmetric function is symmetric (or close to symmetric).
@ Surprising Barrington et. al. construction of CC3[m] circuits for
AND,, produces symmetric circuits.
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has a period p“gs given that pk* > d and g%¢ > logs + 1.
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have a large symmetric representation.

Fact: we provide a construction matching the proven lower
bounds.

Thank youl!



