Violating Constant Degree Hypothesis Requires Breaking Symmetry

Piotr Kawałek & Armin Weiß

TU Wien, University of Stuttgart

STACS, 6 March 2025

ERC Synergy Grant POCOCOP (GA 101071674)

Language L is in the complexity class P/poly iff there is an infinite family of circuits (with one output wire)

$$C_1, C_2, C_3, \ldots$$

such that:

- C_n has *n* inputs and accepts (only) words of length *n* of *L*
- **2** C_n is of size O(poly(n))
- **③** C_n computes over $\{0,1\}$ and is built of gates \land,\lor,\neg .

Language L is in the complexity class P/poly iff there is an infinite family of circuits (with one output wire)

$$C_1, C_2, C_3, \ldots$$

such that:

- C_n has *n* inputs and accepts (only) words of length *n* of *L*
- **2** C_n is of size O(poly(n))
- **③** C_n computes over $\{0,1\}$ and is built of gates \land,\lor,\neg .

Fact 1: $P \subseteq P/poly$,

Language L is in the complexity class P/poly iff there is an infinite family of circuits (with one output wire)

$$C_1, C_2, C_3, \ldots$$

such that:

- C_n has *n* inputs and accepts (only) words of length *n* of *L*
- **2** C_n is of size O(poly(n))
- C_n computes over $\{0,1\}$ and is built of gates \land,\lor,\neg .

Fact 1: $P \subseteq P/poly$, Fact 2: $NP \subsetneq P/poly \implies P \neq NP$.

AC⁰-circuits

Question 1: Can we perform addition modulo 2 with small bounded-depth AC^0 -circuits?

Question 1: Can we perform addition modulo 2 with small bounded-depth $\mathrm{AC}^0\text{-}\mathsf{circuits}?$

Håstad'86: AC⁰-circuits of height *h* require size $2^{\Omega(n^{1/(h-1)})}$ to compute PARITY.

Note 1: Lower bound perfectly matches the naive contruction.

Question 1: Can we perform addition modulo 2 with small bounded-depth $\mathrm{AC}^0\text{-}\mathsf{circuits}?$

Håstad'86: AC⁰-circuits of height *h* require size $2^{\Omega(n^{1/(h-1)})}$ to compute PARITY.

Note 1: Lower bound perfectly matches the naive contruction.

Note 2: The same lower bound holds if we replace parity with arbitrary MOD_m function (by the very same proof).

Question 1: Can we perform addition modulo 2 with small bounded-depth AC^0 -circuits?

Håstad'86: AC⁰-circuits of height *h* require size $2^{\Omega(n^{1/(h-1)})}$ to compute PARITY.

Note 1: Lower bound perfectly matches the naive contruction.

Note 2: The same lower bound holds if we replace parity with arbitrary MOD_m function (by the very same proof).

Dual question: Can we represent Boolean operations like AND_n with small modulo counting circuits on bounded depth?

*CC*⁰-circuits

Fact 2: $MOD_q \circ MOD_p$ -circuits can encode any function (for $p \neq q$). AND_n can be constructructed in size $O(p^n)$.

Fact 2: $MOD_q \circ MOD_p$ -circuits can encode any function (for $p \neq q$). AND_n can be constructructed in size $O(p^n)$.

BBR'94: $CC_3[m]$ -circuits can encode AND_n in size $2^{O(n^{1/r})}$, where *r* is the number of prime divisors of *m*.

Fact 2: $MOD_q \circ MOD_p$ -circuits can encode any function (for $p \neq q$). AND_n can be constructructed in size $O(p^n)$.

BBR'94: $CC_3[m]$ -circuits can encode AND_n in size $2^{O(n^{1/r})}$, where *r* is the number of prime divisors of *m*.

Smart recursive application of the above construction gives a $CC_h[m]$ - representation of AND_n of size

 $\approx 2^{O(n^{1/(h-1)r})}$

(Idziak, Kawałek, Krzaczkowski'22, Chapman, Williams'22)

Fact: We know that $MOD_q \circ MOD_m$ circuits computing AND_n need size $\Omega(c^n)$ (Barrington, Straubing, Thérien'90).

Fact: We know that $MOD_q \circ MOD_m$ circuits computing AND_n need size $\Omega(c^n)$ (Barrington, Straubing, Thérien'90).

In particular we do not know:

0 much about $MOD_6 \circ MOD_6\text{-circuits},$

Fact: We know that $MOD_q \circ MOD_m$ circuits computing AND_n need size $\Omega(c^n)$ (Barrington, Straubing, Thérien'90).

In particular we do not know:

- 0 much about $MOD_6 \circ MOD_6\text{-circuits},$
- much about $MOD_{q \cdot r} \circ MOD_p$ -circuits, for 3 different primes p, q, r,

Fact: We know that $MOD_q \circ MOD_m$ circuits computing AND_n need size $\Omega(c^n)$ (Barrington, Straubing, Thérien'90).

In particular we do not know:

- 0 much about $\mathrm{MOD}_6 \circ \mathrm{MOD}_6\text{-circuits},$
- much about $MOD_{q \cdot r} \circ MOD_p$ -circuits, for 3 different primes
 p, q, r,
- \bigcirc much about $MOD_q \circ MOD_p \circ AND_d$ -circuits.

Fact: We know that $MOD_q \circ MOD_m$ circuits computing AND_n need size $\Omega(c^n)$ (Barrington, Straubing, Thérien'90).

In particular we do not know:

- 0 much about $MOD_6 \circ MOD_6\text{-circuits},$
- much about $MOD_{q \cdot r} \circ MOD_p$ -circuits, for 3 different primes p, q, r,
- **(**) much about $MOD_q \circ MOD_p \circ AND_d$ -circuits.

It is consistent with our knowledge that all this kinds of circuits can solve NP-complete problems in polynomial size!

Conjecture by Barrington, Straubing, Thérien 1990

There is an absolute constant c > 0such that any $MOD_q \circ MOD_m \circ AND_d$ circuit computing AND_n requires size at least $\Omega(c^n)$.

Here: q is a prime number, m is an integer, d is a fixed constant (i.e. d=2), n is a (large) integer.

Conjecture by Barrington, Straubing, Thérien 1990

There is an absolute constant c > 0such that any $MOD_q \circ MOD_p \circ AND_d$ circuit computing AND_n requires size at least $\Omega(c^n)$.

Here: q is a prime number, p is a prime, d is a fixed constant (i.e. d=2), n is a (large) integer.

 $\mathrm{POLEQV}(\mathbf{G})$ - on the input we get an equation, i.e. two expressions over G

$$\mathbf{e}_1(x_1,\ldots,x_n)=\mathbf{e}_2(x_1,\ldots,x_n)$$

and we want to check that it is an identity, i.e. it is satisfied for all $(x_1, x_2, \ldots, x_n) \in G^n$.

 $\mathrm{POLEQV}(\mathbf{G})$ - on the input we get an equation, i.e. two expressions over G

$$\mathbf{e}_1(x_1,\ldots,x_n)=\mathbf{e}_2(x_1,\ldots,x_n)$$

and we want to check that it is an identity, i.e. it is satisfied for all $(x_1, x_2, \ldots, x_n) \in G^n$.

Example 1: x + y = y + x and x + x + x = 0 are identities in \mathbb{Z}_3 .

 $\mathrm{POLEQV}(\mathbf{G})$ - on the input we get an equation, i.e. two expressions over G

$$\mathbf{e}_1(x_1,\ldots,x_n)=\mathbf{e}_2(x_1,\ldots,x_n)$$

and we want to check that it is an identity, i.e. it is satisfied for all $(x_1, x_2, \ldots, x_n) \in G^n$.

Example 1: x + y = y + x and x + x + x = 0 are identities in \mathbb{Z}_3 .

Example 2: xy = yx is not an identity in **D**₅. What about $(xy)^{-1}yxzx^{-1} = (zxy^{-1})^{-1}xy$?

Theorem (Idziak, PK, Krzaczkowski, Weiß, ICALP'22)

For a finite group $\boldsymbol{\mathsf{G}}$ the problem $\mathrm{PolEQV}(\boldsymbol{\mathsf{G}})$ is

- O co-NP-complete when G is nonsolvable,
- ont in P (RP) when G has supernilpotent rank ≥ 3 assuming ETH (rETH),
- in RP when G has supernilpotent rank = 2 assuming Constant Degree Hypothesis.

Theorem (Idziak, PK, Krzaczkowski, Weiß, ICALP'22)

For a finite group $\boldsymbol{\mathsf{G}}$ the problem $\operatorname{PolEqv}(\boldsymbol{\mathsf{G}})$ is

- O co-NP-complete when G is nonsolvable,
- ② not in P (RP) when **G** has supernilpotent rank ≥ 3 assuming ETH (rETH),
- in RP when G has supernilpotent rank = 2 assuming Constant Degree Hypothesis.

CDH holds iff POLEQV(G) is in RP for all the groups G with supernilpotent rank = 2 (unless rETH fails). The reason for this 3 cases is:

- expressions over nonsolvable group can "interpret" any NC¹ circuits, so we get co-NP-complete equivalence here.
- expressions over supernilpotent rank 3 groups can "interpret" some height 3 CC-circuits, which enables subexpotential encoding of AND_n, and in turn subexpotential encoding of 3-CNF forumlas.
- expressions over supernilpotent rank 2 groups can be rewritten to MOD_q \circuits.

Conjecture by Barrington, Straubing, Thérien 1990

There is an absolute constant c > 0such that any $MOD_q \circ MOD_p \circ AND_d$ circuit computing AND_n requires size at least $\Omega(c^n)$.

Here: q is a prime number, p is a prime, d is a fixed constant (i.e. d=2), n is a (large) integer.

Grolmusz, Tardos 2000

 $MOD_q \circ MOD_p \circ AND_d$ - circuit computing AND_n requires size $\Omega(c^n)$ for some absolute constant c, when the number of AND_d gates wired to one MOD_p gate is at most $o(n^2/\log n)$.

Grolmusz, Tardos 2000

 $MOD_q \circ MOD_p \circ AND_d$ - circuit computing AND_n requires size $\Omega(c^n)$ for some absolute constant c, when the number of AND_d gates wired to one MOD_p gate is at most $o(n^2/\log n)$.

Grolmusz, Tardos 2000; Straubing, Thérien 2000

The only symmetric functions computed by $MOD_q \circ MOD_p$ - circuits of size *s* have period $p \cdot q^k$, where $q^k \in \Theta(\log s)$.

Grolmusz, Tardos 2000

 $MOD_q \circ MOD_p \circ AND_d$ - circuit computing AND_n requires size $\Omega(c^n)$ for some absolute constant c, when the number of AND_d gates wired to one MOD_p gate is at most $o(n^2/\log n)$.

Grolmusz, Tardos 2000; Straubing, Thérien 2000

The only symmetric functions computed by $MOD_q \circ MOD_p$ - circuits of size *s* have period $p \cdot q^k$, where $q^k \in \Theta(\log s)$.

Corollary: as AND_n function has no nontrivial periods it must have a large symmetric representation.

If function $f:\{0,1\}^n\longrightarrow \{0,1\}$ is symmetric we can define $f(k):=f(1^k\ 0^{n-k})$

period of f is any integer r with $0 \le r \le n-1$ and

$$f(k) = f(k+r)$$

for all k satisfying $0 \leq k \leq n - r$.

Theorem

There is an absolute constant c > 0such that any **symmetric** $MOD_q \circ MOD_p \circ AND_d$ circuit computing AND_n requires size at least $\Omega(c^n)$.

Here: p, q are prime numbers, d is a fixed constant (i.e. d=2), n is a (large) integer.

Two reasons to consider symmetric circuits here:

 It is natural to believe that optimal representation of a symmetric function is symmetric (or close to symmetric). Two reasons to consider symmetric circuits here:

- It is natural to believe that optimal representation of a symmetric function is symmetric (or close to symmetric).
- Surprising Barrington et. al. construction of CC₃[m] circuits for AND_n produces symmetric circuits.

Let p and q be primes and $n \ge 13$ and let $1 \le d \le n$. Then any function computed by an *n*-input symmetric $MOD_q \circ MOD_p \circ AND_d$ circuit of size $s < 2^{n/9}$ has a period $p^{k_p}q^{k_q}$ given that $p^{k_p} > d$ and $q^{k_q} > \log s + 1$.

Let p and q be primes and $n \ge 13$ and let $1 \le d \le n$. Then any function computed by an *n*-input symmetric $MOD_q \circ MOD_p \circ AND_d$ circuit of size $s < 2^{n/9}$ has a period $p^{k_p}q^{k_q}$ given that $p^{k_p} > d$ and $q^{k_q} > \log s + 1$.

Corollary: as AND_n function has no nontrivial periods it must have a large symmetric representation.

Let p and q be primes and $n \ge 13$ and let $1 \le d \le n$. Then any function computed by an *n*-input symmetric $MOD_q \circ MOD_p \circ AND_d$ circuit of size $s < 2^{n/9}$ has a period $p^{k_p}q^{k_q}$ given that $p^{k_p} > d$ and $q^{k_q} > \log s + 1$.

Corollary: as AND_n function has no nontrivial periods it must have a large symmetric representation.

Fact: we provide a construction matching the proven lower bounds.

Let p and q be primes and $n \ge 13$ and let $1 \le d \le n$. Then any function computed by an *n*-input symmetric $MOD_q \circ MOD_p \circ AND_d$ circuit of size $s < 2^{n/9}$ has a period $p^{k_p}q^{k_q}$ given that $p^{k_p} > d$ and $q^{k_q} > \log s + 1$.

Corollary: as AND_n function has no nontrivial periods it must have a large symmetric representation.

Fact: we provide a construction matching the proven lower bounds.

Thank you!