Categorizing Ensembles of Real-Valued Functions

Florian Bruse² Martin Lange¹ Sören Möller¹

¹Universität Kassel, Germany

²TU Munich, Germany

Theorietag 2025 3/4 March, 2025

background: science classes at secondary education level

• students obtain some basic knowledge on natural phenomenon (e.g., yeast growth, electrical currents, ...), including some data points

background: science classes at secondary education level

- students obtain some basic knowledge on natural phenomenon (e.g., yeast growth, electrical currents, ...), including some data points
- students formulate a hypothesis on further behavior of phenomenon
 - increased temperature entails increased yeast growth

background: science classes at secondary education level

- students obtain some basic knowledge on natural phenomenon (e.g., yeast growth, electrical currents, ...), including some data points
- students formulate a hypothesis on further behavior of phenomenon
 - increased temperature entails increased yeast growth
 - x voltage leads to y current

background: science classes at secondary education level

- students obtain some basic knowledge on natural phenomenon (e.g., yeast growth, electrical currents, ...), including some data points
- students formulate a hypothesis on further behavior of phenomenon
 - increased temperature entails increased yeast growth
 - x voltage leads to y current
 - light intensity is constant between 11 am and 1 pm
- students validate hypothesis via experiment, go back to previous step if this fails

background: science classes at secondary education level

- students obtain some basic knowledge on natural phenomenon (e.g., yeast growth, electrical currents, ...), including some data points
- students formulate a hypothesis on further behavior of phenomenon
 - increased temperature entails increased yeast growth
 - x voltage leads to y current
 - light intensity is constant between 11 am and 1 pm
- students validate hypothesis via experiment, go back to previous step if this fails

purpose of project is digital reproduction of this process

reason: some experiments too slow/dangerous/expensive/... to do in class

background: science classes at secondary education level

- students obtain some basic knowledge on natural phenomenon (e.g., yeast growth, electrical currents, ...), including some data points
- students formulate a hypothesis on further behavior of phenomenon
 - increased temperature entails increased yeast growth
 - x voltage leads to y current
 - light intensity is constant between 11 am and 1 pm
- students validate hypothesis via experiment, go back to previous step if this fails

purpose of project is digital reproduction of this process

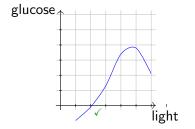
reason: some experiments too slow/dangerous/expensive/... to do in class

requires:

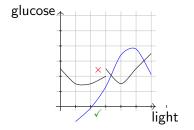
- formalization of making statements about natural phenomena
- efficient decidability of logical entailment of such statements

fix (partially ordered) set of variables \mathcal{V} , e.g., temp, yeastAct, volt,...

fix (partially ordered) set of variables \mathcal{V} , e.g., temp, yeastAct, volt,...



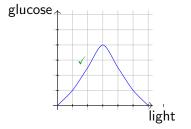
fix (partially ordered) set of variables \mathcal{V} , e.g., temp, yeastAct, volt,...



fix (partially ordered) set of variables \mathcal{V} , e.g., temp, yeastAct, volt,...

influence experiment is set of continuous functions $\mathcal{F}: \mathcal{V} \times \mathcal{V} \rightarrow (\mathbb{R} \rightarrow \mathbb{R})$ s.t.

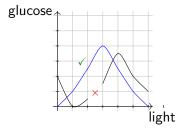
• domain of all functions is interval



fix (partially ordered) set of variables \mathcal{V} , e.g., temp, yeastAct, volt,...

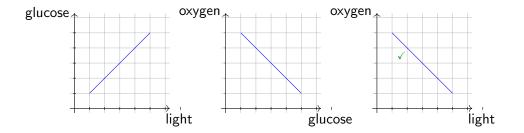
influence experiment is set of continuous functions $\mathcal{F}: \mathcal{V} \times \mathcal{V} \rightarrow (\mathbb{R} \rightarrow \mathbb{R})$ s.t.

• domain of all functions is interval



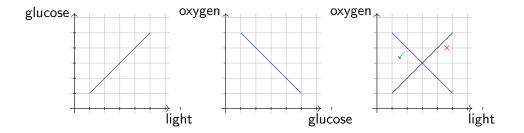
fix (partially ordered) set of variables \mathcal{V} , e.g., temp, yeastAct, volt,...

- domain of all functions is interval
- $\mathcal{F}_{a,c}(x) = \mathcal{F}_{b,c}(\mathcal{F}_{a,b}(x))$ for all $a, b, c \in \mathcal{V}$, $x \in \mathbb{R}$ (coherence property)



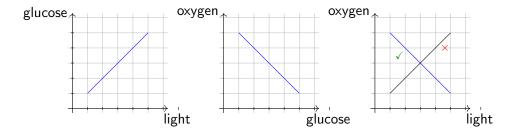
fix (partially ordered) set of variables \mathcal{V} , e.g., temp, yeastAct, volt,...

- domain of all functions is interval
- $\mathcal{F}_{a,c}(x) = \mathcal{F}_{b,c}(\mathcal{F}_{a,b}(x))$ for all $a, b, c \in \mathcal{V}$, $x \in \mathbb{R}$ (coherence property)



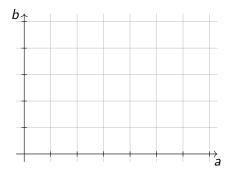
fix (partially ordered) set of variables \mathcal{V} , e.g., temp, yeastAct, volt,...

- domain of all functions is interval
- $\mathcal{F}_{a,c}(x) = \mathcal{F}_{b,c}(\mathcal{F}_{a,b}(x))$ for all $a, b, c \in \mathcal{V}$, $x \in \mathbb{R}$ (coherence property)
- functions defined only alongside variable order



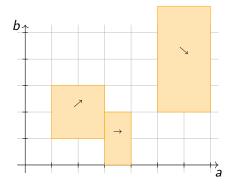
influence statement S is $a \stackrel{IqI'}{\longrightarrow} b$ where

- *a*, *b* are variables
- *I*, *I*' are closed intervals with bounds in Q
- q is a behaviour from $\{\nearrow, \searrow, \rightarrow, \rightsquigarrow\}$



influence statement S is $a \stackrel{IqI'}{\longrightarrow} b$ where

- *a*, *b* are variables
- I, I' are closed intervals with bounds in \mathbb{Q}
- q is a behaviour from $\{\nearrow, \searrow, \rightarrow, \rightsquigarrow\}$



influence statement S is $a \stackrel{IqI'}{\longrightarrow} b$ where

- *a*, *b* are variables
- *I*, *I*' are closed intervals with bounds in Q
- q is a behaviour from $\{\nearrow, \searrow, \rightarrow, \rightsquigarrow\}$

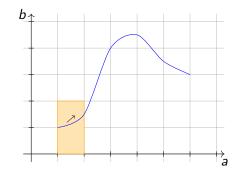


semantics: $\mathcal{F} \models S$ (for $S = a \triangleleft q \downarrow \prime b$) iff

- $\mathcal{F}_{a,b}(x) \in I'$ for all $x \in I$, and
- $\mathcal{F}_{a,b}$ "displays behaviour" q on l

influence statement S is $a \stackrel{IqI'}{\longrightarrow} b$ where

- *a*, *b* are variables
- *I*, *I*' are closed intervals with bounds in Q
- q is a behaviour from $\{\nearrow, \searrow, \rightarrow, \rightsquigarrow\}$



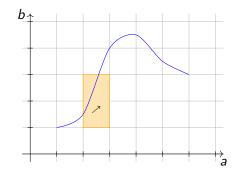
semantics: $\mathcal{F} \models S$ (for $S = a \stackrel{I q I'}{\longrightarrow} b$) iff

- $\mathcal{F}_{a,b}(x) \in I'$ for all $x \in I$, and
- $\mathcal{F}_{a,b}$ "displays behaviour" q on l

•
$$\mathcal{F} \models a \stackrel{[1,2]}{\longrightarrow} \stackrel{[0,2]}{\longrightarrow} b$$

influence statement S is $a \stackrel{IqI'}{\longrightarrow} b$ where

- *a*, *b* are variables
- *I*, *I*' are closed intervals with bounds in Q
- q is a behaviour from $\{\nearrow, \searrow, \rightarrow, \rightsquigarrow\}$



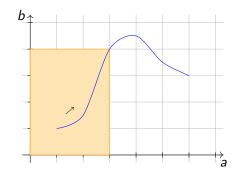
semantics: $\mathcal{F} \models S$ (for $S = a \stackrel{I q I'}{\longrightarrow} b$) iff

- $\mathcal{F}_{a,b}(x) \in I'$ for all $x \in I$, and
- $\mathcal{F}_{a,b}$ "displays behaviour" q on l

- $\mathcal{F} \models a \xrightarrow{[1,2]} \nearrow [0,2] b$
- $\mathcal{F} \not\models a \stackrel{[2,3]}{\longrightarrow} \stackrel{[1,3]}{\longrightarrow} b$

influence statement S is $a \stackrel{IqI'}{\longrightarrow} b$ where

- *a*, *b* are variables
- *I*, *I*' are closed intervals with bounds in Q
- q is a behaviour from $\{\nearrow, \searrow, \rightarrow, \rightsquigarrow\}$



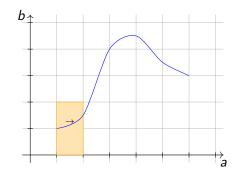
semantics: $\mathcal{F} \models S$ (for $S = a \stackrel{IqI'}{\longrightarrow} b$) iff

- $\mathcal{F}_{a,b}(x) \in I'$ for all $x \in I$, and
- $\mathcal{F}_{a,b}$ "displays behaviour" q on l

- $\mathcal{F} \models a \stackrel{[1,2]}{\longrightarrow} \stackrel{[0,2]}{\longrightarrow} b$
- $\mathcal{F} \not\models a \stackrel{[2,3]}{\longrightarrow} \stackrel{[1,3]}{\longrightarrow} b$
- $\mathcal{F} \not\models a \stackrel{[0,3]}{\longrightarrow} \stackrel{[0,4]}{\longrightarrow} b$

influence statement S is $a \stackrel{IqI'}{\longrightarrow} b$ where

- *a*, *b* are variables
- *I*, *I*' are closed intervals with bounds in Q
- q is a behaviour from $\{\nearrow, \searrow, \rightarrow, \rightsquigarrow\}$



semantics: $\mathcal{F} \models S$ (for $S = a \stackrel{I q I'}{\longrightarrow} b$) iff

- $\mathcal{F}_{a,b}(x) \in I'$ for all $x \in I$, and
- $\mathcal{F}_{a,b}$ "displays behaviour" q on l

- $\mathcal{F} \models a \stackrel{[1,2]}{\longrightarrow} \stackrel{[0,2]}{\longrightarrow} b$
- $\mathcal{F} \not\models a \stackrel{[2,3]}{\longrightarrow} \stackrel{[1,3]}{\longrightarrow} b$
- $\mathcal{F} \not\models a \stackrel{[0,3]}{\longrightarrow} \stackrel{[0,4]}{\longrightarrow} b$
- $\mathcal{F} \not\models a \xrightarrow{[1,2] \to [0,2]} b$

influence scheme $\mathcal{C} = set$ of influence statements

semantics: $\mathcal{F} \models \mathcal{C}$ if $\mathcal{F} \models S$ f.a. $S \in \mathcal{C}$

influence scheme C = set of influence statements

semantics: $\mathcal{F} \models \mathcal{C}$ if $\mathcal{F} \models S$ f.a. $S \in \mathcal{C}$

hypothesis H is a statement

H follows from scheme C, written $C \models H$ if $\mathcal{F} \models C$ entails $\mathcal{F} \models H$ f.a. \mathcal{F}

influence scheme C = set of influence statements

semantics: $\mathcal{F} \models \mathcal{C}$ if $\mathcal{F} \models S$ f.a. $S \in \mathcal{C}$

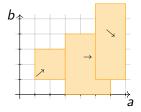
hypothesis H is a statement

H follows from scheme C, written $C \models H$ if $\mathcal{F} \models C$ entails $\mathcal{F} \models H$ f.a. \mathcal{F}

consider scheme \mathcal{C} with

- $a \xrightarrow{[1,3]} \xrightarrow{[1,3]} b$
- $a \subseteq [3,6] \rightarrow [0,4] b$
- $a \xrightarrow{[5,7]} \xrightarrow{[1,6]} b$

have:



influence scheme C = set of influence statements

semantics: $\mathcal{F} \models \mathcal{C}$ if $\mathcal{F} \models S$ f.a. $S \in \mathcal{C}$

hypothesis H is a statement

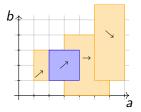
H follows from scheme C, written $C \models H$ if $\mathcal{F} \models C$ entails $\mathcal{F} \models H$ f.a. \mathcal{F}

consider scheme \mathcal{C} with

- $a \xrightarrow{[1,3]} \xrightarrow{[1,3]} b$
- $a \xrightarrow{[3,6] \to [0,4]} b$
- $a \xrightarrow{[5,7]} [1,6] b$

have:

• $\mathcal{C} \models a \stackrel{[2,4]}{\longrightarrow} \stackrel{[1,3]}{\longrightarrow} b$



influence scheme C = set of influence statements

semantics: $\mathcal{F} \models \mathcal{C}$ if $\mathcal{F} \models S$ f.a. $S \in \mathcal{C}$

hypothesis H is a statement

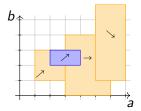
H follows from scheme C, written $C \models H$ if $\mathcal{F} \models C$ entails $\mathcal{F} \models H$ f.a. \mathcal{F}

consider scheme \mathcal{C} with

- $a \xrightarrow{[1,3]} \xrightarrow{[1,3]} b$
- $a \xrightarrow{[3,6] \rightarrow [0,4]} b$
- $a \xrightarrow{[5,7]} [1,6] b$

have:

- $\mathcal{C} \models a \stackrel{[2,4]}{\longrightarrow} \stackrel{[1,3]}{\longrightarrow} b$
- $\mathcal{C} \not\models a \stackrel{[2,4]}{\longrightarrow} \stackrel{[2,3]}{\longrightarrow} b$



influence scheme C = set of influence statements

semantics: $\mathcal{F} \models \mathcal{C}$ if $\mathcal{F} \models S$ f.a. $S \in \mathcal{C}$

hypothesis H is a statement

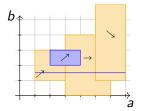
H follows from scheme C, written $C \models H$ if $\mathcal{F} \models C$ entails $\mathcal{F} \models H$ f.a. \mathcal{F}

consider scheme \mathcal{C} with

- $a \xrightarrow{[1,3]} \xrightarrow{[1,3]} b$
- $a \xrightarrow{[3,6] \rightarrow [0,4]} b$
- $a \xrightarrow{[5,7]} [1,6] b$

have:

- $\mathcal{C} \models a \stackrel{[2,4]}{\longrightarrow} \stackrel{[1,3]}{\longrightarrow} b$
- $\mathcal{C} \not\models a \stackrel{[2,4]}{\longrightarrow} \stackrel{[2,3]}{\longrightarrow} b$



goal: (efficient) decidability of entailment (\models) (cf. motivation)

first approach: Calculus of Influence (B./Lange/Möller Cade'23 + follow-up)

approximate \models via proof-theoretic rules \rightsquigarrow defines provability relation \vdash

(fact)
$$----$$
 if $S \in C$

goal: (efficient) decidability of entailment (\models) (cf. motivation)

first approach: Calculus of Influence (B./Lange/Möller Cade'23 + follow-up)

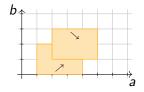
approximate \models via proof-theoretic rules \rightsquigarrow defines provability relation \vdash

(fact)
$$----$$
 if $S \in C$

goal: (efficient) decidability of entailment (\models) (cf. motivation)

first approach: Calculus of Influence (B./Lange/Möller Cade'23 + follow-up) approximate ⊨ via proof-theoretic rules → defines provability relation ⊢

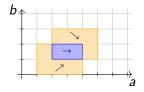
(fact)
$$\xrightarrow{S}$$
 if $S \in C$
(int⁺) $\xrightarrow{a \underbrace{l_1 q l'_1}{b} b} a \underbrace{l_2 q' l'_2}{a \underbrace{l_1 \cap l_2 \text{ inf}_{\leq}(q,q') l'_1 \cap l'_2} b}$



goal: (efficient) decidability of entailment (\models) (cf. motivation)

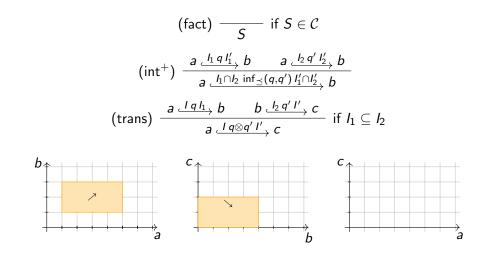
first approach: Calculus of Influence (B./Lange/Möller Cade'23 + follow-up) approximate ⊨ via proof-theoretic rules → defines provability relation ⊢

(fact)
$$\xrightarrow{S}$$
 if $S \in C$
(int⁺) $\xrightarrow{a \underbrace{l_1 q l'_1}{b} b} a \underbrace{l_2 q' l'_2}{a \underbrace{l_1 \cap l_2 \text{ inf}_{\leq}(q,q') l'_1 \cap l'_2} b}$



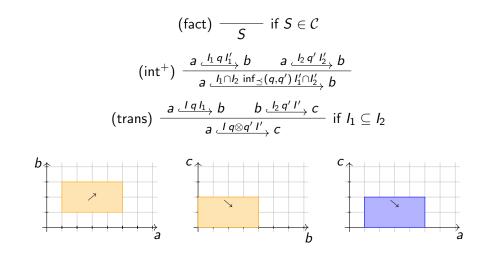
goal: (efficient) decidability of entailment (\models) (cf. motivation)

first approach: Calculus of Influence (B./Lange/Möller Cade'23 + follow-up) approximate \models via proof-theoretic rules \rightsquigarrow defines provability relation \vdash



goal: (efficient) decidability of entailment (\models) (cf. motivation)

first approach: Calculus of Influence (B./Lange/Möller Cade'23 + follow-up) approximate \models via proof-theoretic rules \rightsquigarrow defines provability relation \vdash



Limits of the Calculus

Theorem 1

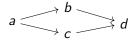
On diamond-free, elementary schemes, the Calculus of Influence is complete, i.e., $C \models H$ iff $C \vdash H$.

Limits of the Calculus

Theorem 1

On diamond-free, elementary schemes, the Calculus of Influence is complete, i.e., $C \models H$ iff $C \vdash H$.

• a scheme is diamond-free if variable order has no diamonds like below

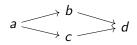


Limits of the Calculus

Theorem 1

On diamond-free, elementary schemes, the Calculus of Influence is complete, i.e., $C \models H$ iff $C \vdash H$.

- a scheme is diamond-free if variable order has no diamonds like below
- a scheme is elementary if statements only on elementary variable pairs (i.e. not on a → c, a → d, b → d)





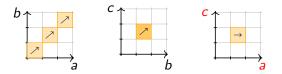
Limits of the Calculus

Theorem 1

On diamond-free, elementary schemes, the Calculus of Influence is complete, i.e., $C \models H$ iff $C \vdash H$.

- a scheme is diamond-free if variable order has no diamonds like below
- a scheme is elementary if statements only on elementary variable pairs (i.e. not on a → c, a → d, b → d)

failure for e.g., non-elementary schemes: backwards reasoning



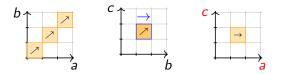
Limits of the Calculus

Theorem 1

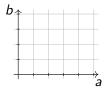
On diamond-free, elementary schemes, the Calculus of Influence is complete, i.e., $C \models H$ iff $C \vdash H$.

- a scheme is diamond-free if variable order has no diamonds like below
- a scheme is elementary if statements only on elementary variable pairs (i.e. not on a → c, a → d, b → d)

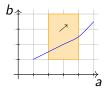
failure for e.g., non-elementary schemes: backwards reasoning



new, direct approach: compute whether $C \models H$ by exhaustive testing problem: in general, have infinitely many experiments \mathcal{F} with $\mathcal{F} \models C$ however: differences often (but not always) negligible w.r.t. H

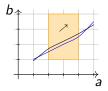


new, direct approach: compute whether $C \models H$ by exhaustive testing problem: in general, have infinitely many experiments \mathcal{F} with $\mathcal{F} \models C$ however: differences often (but not always) negligible w.r.t. H



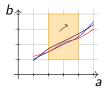
the blue

new, direct approach: compute whether $C \models H$ by exhaustive testing problem: in general, have infinitely many experiments \mathcal{F} with $\mathcal{F} \models C$ however: differences often (but not always) negligible w.r.t. H



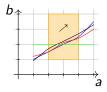
the blue, black

new, direct approach: compute whether $C \models H$ by exhaustive testing problem: in general, have infinitely many experiments \mathcal{F} with $\mathcal{F} \models C$ however: differences often (but not always) negligible w.r.t. H



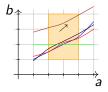
the blue, black and red functions are quite similar

new, direct approach: compute whether $C \models H$ by exhaustive testing problem: in general, have infinitely many experiments \mathcal{F} with $\mathcal{F} \models C$ however: differences often (but not always) negligible w.r.t. H



the blue, black and red functions are quite similar the green one is different (it is constant)

new, direct approach: compute whether $C \models H$ by exhaustive testing problem: in general, have infinitely many experiments \mathcal{F} with $\mathcal{F} \models C$ however: differences often (but not always) negligible w.r.t. H



the blue, black and red functions are quite similar

the green one is different (it is constant), and so is the brown one (much larger *b*-value)

want: equivalence relation \sim_{good} between influence experiments s.t.

for all *H* (with integer bounds), all *F* ∼_{good} *F*', have *F* ⊨ *H* iff *F*' ⊨ *H* i.e., ∼_{good} refines equivalence w.r.t. integer-bounded statements

want: equivalence relation \sim_{good} between influence experiments s.t.

- for all *H* (with integer bounds), all *F* ∼_{good} *F*', have *F* ⊨ *H* iff *F*' ⊨ *H* i.e., ∼_{good} refines equivalence w.r.t. integer-bounded statements
- ullet \sim has finite index
- equivalence classes of \sim_{good} are effectively enumerable

want: equivalence relation \sim_{good} between influence experiments s.t.

- for all *H* (with integer bounds), all *F* ∼_{good} *F*', have *F* ⊨ *H* iff *F*' ⊨ *H* i.e., ∼_{good} refines equivalence w.r.t. integer-bounded statements
- ullet \sim has finite index
- equivalence classes of \sim_{good} are effectively enumerable
- for each equivalence class have an effectively constructable representative

want: equivalence relation \sim_{good} between influence experiments s.t.

- for all *H* (with integer bounds), all *F* ∼_{good} *F*', have *F* ⊨ *H* iff *F*' ⊨ *H* i.e., ∼_{good} refines equivalence w.r.t. integer-bounded statements
- ullet \sim has finite index
- equivalence classes of $\sim_{\sf good}$ are effectively enumerable
- for each equivalence class have an effectively constructable representative

plus ideally: \sim_{good} compatible with coherence property (to be made precise later)

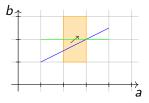
want: equivalence relation \sim_{good} between influence experiments s.t.

- for all *H* (with integer bounds), all *F* ∼_{good} *F*', have *F* ⊨ *H* iff *F*' ⊨ *H* i.e., ∼_{good} refines equivalence w.r.t. integer-bounded statements
- ullet \sim has finite index
- equivalence classes of $\sim_{\sf good}$ are effectively enumerable
- for each equivalence class have an effectively constructable representative plus ideally: \sim_{good} compatible with coherence property (to be made precise later) yields: whether $C \models H$ reduces to testing finitely many cases

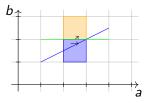
equivalence relation that satisfies above requirements is good

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

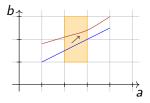
statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)



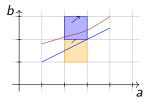
statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)



statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

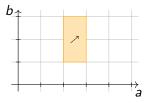


statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)



statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

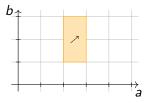
clearly too coarse:



idea: refine this equivalence "up to integer grid precision"

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

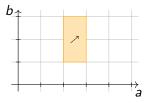


idea: refine this equivalence "up to integer grid precision"

• chop domain of statements to intervals of length 1

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

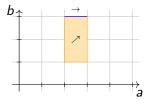


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

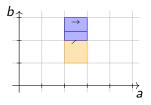


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

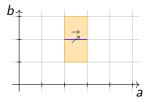


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

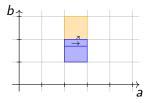


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

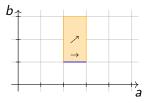


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

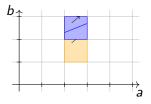


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

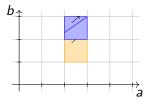


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

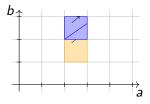


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

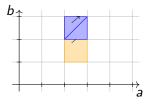


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

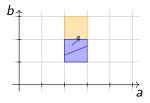


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

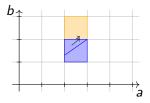


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

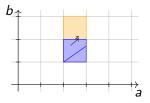


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

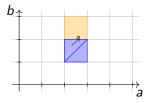


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:

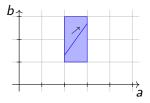


idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:



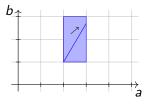
idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

The Case of One Variable Pair

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:



idea: refine this equivalence "up to integer grid precision"

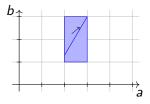
- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

example classes above (with representative drawn)

The Case of One Variable Pair

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:



idea: refine this equivalence "up to integer grid precision"

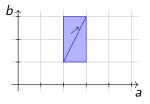
- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

example classes above (with representative drawn)

The Case of One Variable Pair

statements already introduce some equivalence: influences that satisfy statement vs. those that don't (cf. previous example)

clearly too coarse:



idea: refine this equivalence "up to integer grid precision"

- chop domain of statements to intervals of length 1
- categorize exact range up to integer bounds

example classes above (with representative drawn)

define $\sim_{\rm rng}$ as natural product of equivalence classes "up to integer precision" induced by individual classes in scheme

define $\sim_{\rm rng}$ as natural product of equivalence classes "up to integer precision" induced by individual classes in scheme

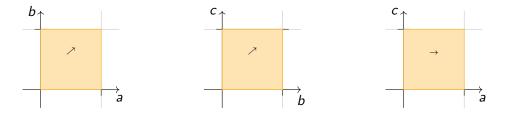
Theorem 2

For experiments with one variable pair, \sim_{rng} is good.

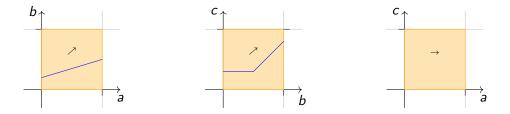
define $\sim_{\rm rng}$ as natural product of equivalence classes "up to integer precision" induced by individual classes in scheme

Theorem 2 For experiments with one variable pair, \sim_{rng} is good.

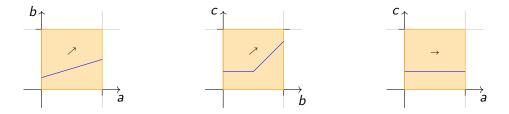
define $\sim_{\rm rng}$ as natural product of equivalence classes "up to integer precision" induced by individual classes in scheme



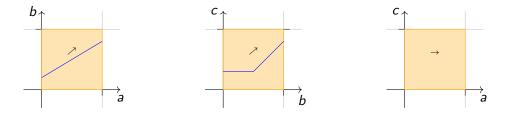
define $\sim_{\rm rng}$ as natural product of equivalence classes "up to integer precision" induced by individual classes in scheme



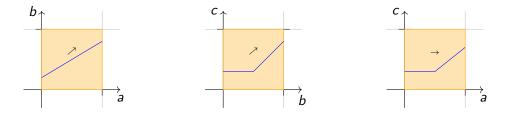
define $\sim_{\rm rng}$ as natural product of equivalence classes "up to integer precision" induced by individual classes in scheme

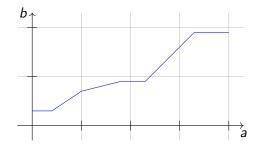


define $\sim_{\rm rng}$ as natural product of equivalence classes "up to integer precision" induced by individual classes in scheme



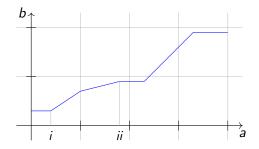
define $\sim_{\rm rng}$ as natural product of equivalence classes "up to integer precision" induced by individual classes in scheme



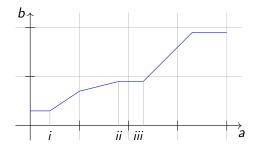


goal: characterize points related directly to integer-value coordinates

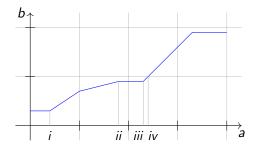
• rightmost *a* value with same *b*-value as a = 0



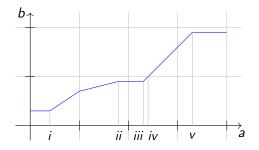
- rightmost *a* value with same *b*-value as a = 0
- I leftmost *a* with same *b*-value as a = 2



- rightmost *a* value with same *b*-value as a = 0
- I leftmost *a* with same *b*-value as a = 2
- **(a)** rightmost *a* with same *b*-value as a = 2

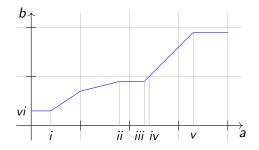


- rightmost *a* value with same *b*-value as a = 0
- I leftmost *a* with same *b*-value as a = 2
- ightmost *a* with same *b*-value as a = 2
- a-value where b-value is 2



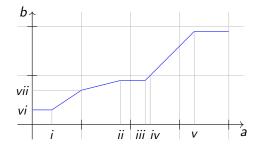
- rightmost *a* value with same *b*-value as a = 0
- I leftmost *a* with same *b*-value as a = 2
- ightmost *a* with same *b*-value as a = 2
- a-value where b-value is 2
- Solution leftmost *a*-value with same *b*-value as a = 4

goal: characterize points related directly to integer-value coordinates



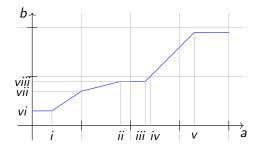
- rightmost *a* value with same *b*-value as a = 0
- leftmost *a* with same *b*-value as a = 2
- ightmost *a* with same *b*-value as a = 2
- a-value where b-value is 2
- Solution leftmost *a*-value with same *b*-value as a = 4

• **b**-value of a = 0



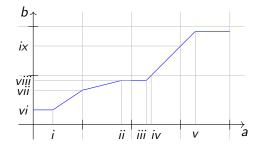
- rightmost *a* value with same *b*-value as a = 0
- I leftmost *a* with same *b*-value as a = 2
- ightmost *a* with same *b*-value as a = 2
- a-value where b-value is 2
- leftmost *a*-value with same *b*-value as a = 4

- *b*-value of a = 0
- **b**-value of a = 1



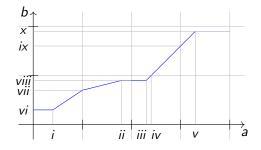
- rightmost *a* value with same *b*-value as a = 0
- I leftmost *a* with same *b*-value as a = 2
- ightmost *a* with same *b*-value as a = 2
- a-value where b-value is 2
- Solution leftmost *a*-value with same *b*-value as a = 4

- **b**-value of a = 0
- *b*-value of a = 1
- **b**-value of a = 2



- rightmost *a* value with same *b*-value as a = 0
- I leftmost *a* with same *b*-value as a = 2
- ightmost *a* with same *b*-value as a = 2
- a-value where b-value is 2
- Ieftmost a-value with same b-value as a = 4

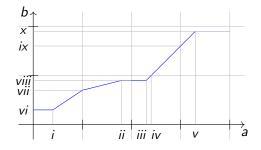
- **b**-value of a = 0
- *b*-value of a = 1
- **b**-value of a = 2
- **b**-value of a = 3



- rightmost *a* value with same *b*-value as a = 0
- I leftmost *a* with same *b*-value as a = 2
- ightmost *a* with same *b*-value as a = 2
- a-value where b-value is 2
- Ieftmost a-value with same b-value as a = 4

- **b**-value of a = 0
- *b*-value of a = 1
- **b**-value of a = 2
- **b**-value of a = 3
- Solution b-value of a = 4

goal: characterize points related directly to integer-value coordinates



- rightmost *a* value with same *b*-value as a = 0
- I leftmost *a* with same *b*-value as a = 2
- ightmost *a* with same *b*-value as a = 2
- a-value where b-value is 2
- Solution leftmost *a*-value with same *b*-value as a = 4

• **b**-value of a = 0

- **b**-value of a = 1
- **b**-value of a = 2
- **b**-value of a = 3
- **b**-value of a = 4

exact value of points not important, just their order and relation to integer values

pre-categorize functions using \sim_{rng} (make ranges exact "up to integer values")

pre-categorize functions using $\sim_{\sf rng}$ (make ranges exact "up to integer values")

- \nearrow function $\mathcal{F}_{a,b}$ induces Pol on *a*-axis:
 - last point in [i, i + 1] to have same *b*-value as function on a = i

pre-categorize functions using $\sim_{\sf rng}$ (make ranges exact "up to integer values")

- \nearrow function $\mathcal{F}_{a,b}$ induces Pol on *a*-axis:
 - last point in [i, i + 1] to have same *b*-value as function on a = i
 - first point in [i, i + 1] to have same *b*-value as function on a = i

pre-categorize functions using $\sim_{\sf rng}$ (make ranges exact "up to integer values")

- \nearrow function $\mathcal{F}_{a,b}$ induces Pol on *a*-axis:
 - last point in [i, i + 1] to have same *b*-value as function on a = i
 - first point in [i, i + 1] to have same *b*-value as function on a = i
- function $\mathcal{F}_{a,b}$ induces Pol on *b*-axis:
 - *b*-value of function on a = i, for each integer *i*

pre-categorize functions using $\sim_{\sf rng}$ (make ranges exact "up to integer values")

- \nearrow function $\mathcal{F}_{a,b}$ induces Pol on *a*-axis:
 - last point in [i, i + 1] to have same *b*-value as function on a = i
 - first point in [i, i + 1] to have same *b*-value as function on a = i
- function $\mathcal{F}_{a,b}$ induces Pol on *b*-axis:
 - *b*-value of function on a = i, for each integer *i*
- points transfer transitively (not shown), e.g., last/first points with same value as Pol also Pol

pre-categorize functions using $\sim_{\sf rng}$ (make ranges exact "up to integer values")

for each class, generate finitely many points of interest as follows (here for \nearrow):

- \nearrow function $\mathcal{F}_{a,b}$ induces Pol on *a*-axis:
 - last point in [i, i + 1] to have same *b*-value as function on a = i
 - first point in [i, i + 1] to have same *b*-value as function on a = i
- function $\mathcal{F}_{a,b}$ induces Pol on *b*-axis:
 - *b*-value of function on a = i, for each integer *i*
- points transfer transitively (not shown), e.g., last/first points with same value as Pol also Pol

important: set remains finite in spite of this

generate relation $\sim_{\sf Pol}$ by making influences equivalent if their Pol have the same order and same relation to integer values

Conjecture 3

 \sim_{Pol} is good, even on non-elementary schemes with diamonds.

problem: want to effectively decide \models for statements on real-valued functions proof-theoretic approach not feasible due to required backwards reasoning etc.

problem: want to effectively decide \models for statements on real-valued functions proof-theoretic approach not feasible due to required backwards reasoning etc.

introduced equivalence relation on influence experiments that (hopefully) allows to decide \models

problem: want to effectively decide \models for statements on real-valued functions proof-theoretic approach not feasible due to required backwards reasoning etc.

introduced equivalence relation on influence experiments that (hopefully) allows to decide \models

• pro: does away with rules of calculus

problem: want to effectively decide \models for statements on real-valued functions proof-theoretic approach not feasible due to required backwards reasoning etc.

introduced equivalence relation on influence experiments that (hopefully) allows to decide \models

- pro: does away with rules of calculus
- pro: decidability for a wider range of schemes

problem: want to effectively decide \models for statements on real-valued functions proof-theoretic approach not feasible due to required backwards reasoning etc.

introduced equivalence relation on influence experiments that (hopefully) allows to decide \models

- pro: does away with rules of calculus
- pro: decidability for a wider range of schemes
- con: complexity likely not very good (many classes even for few functions) maybe possible to avoid generating all of them/do iterative refinement

problem: want to effectively decide \models for statements on real-valued functions proof-theoretic approach not feasible due to required backwards reasoning etc.

introduced equivalence relation on influence experiments that (hopefully) allows to decide \models

- pro: does away with rules of calculus
- pro: decidability for a wider range of schemes
- con: complexity likely not very good (many classes even for few functions) maybe possible to avoid generating all of them/do iterative refinement

questions?