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Motivation

background: science classes at secondary education level

® students obtain some basic knowledge on natural phenomenon (e.g., yeast growth,
electrical currents, ...), including some data points

® students formulate a hypothesis on further behavior of phenomenon

® increased temperature entails increased yeast growth
® x voltage leads to y current
® |ight intensity is constant between 11 am and 1 pm

® students validate hypothesis via experiment, go back to previous step if this fails

purpose of project is digital reproduction of this process
reason: some experiments too slow/dangerous/expensive/. . .to do in class
requires:

e formalization of making statements about natural phenomena

o efficient decidability of logical entailment of such statements
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Influences

fix (partially ordered) set of variables V), e.g., temp, yeastAct, volt, . ..

influence experiment is set of continuous functions F :V x V — (R — R) s.t.
® domain of all functions is interval
® Fac(x) = Fpc(Fap(x)) forall a,b,c € V, x € R (coherence property)

e functions defined only alongside variable order

glucose oxygen oxygen

light glucose light
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influence scheme C = set of influence statements

semantics: F ECif FE=Sfa. SecC

hypothesis H is a statement

H follows from scheme C, written C |= H if F |=C entails F = H fa. F

consider scheme C with
o 5 [1.3] 7[13], p

s ol b
e 3 [3,6] — [0,4] b N
o 5 571 \16], p [~ ]~
have: { (LA —
* ClEal24 7113 p Ty

S
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A New Approach

new, direct approach: compute whether C |= H by exhaustive testing
problem: in general, have infinitely many experiments F with F = C

however: differences often (but not always) negligible w.r.t. H

T =

/

the blue, black and red functions are quite similar

the green one is different (it is constant), and so is the brown one (much larger b-value)
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Equivalence for Influence Experiments

want: equivalence relation ~g,,q between influence experiments s.t.

e for all H (with integer bounds), all F ~gooq F', have F = H iff F' = H
i.e., ~good refines equivalence w.r.t. integer-bounded statements

® ~ has finite index
® equivalence classes of ~gqoq are effectively enumerable
e for each equivalence class have an effectively constructable representative

plus ideally: ~go04 compatible with coherence property (to be made precise later)

yields: whether C = H reduces to testing finitely many cases

equivalence relation that satisfies above requirements is good
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Categorizing Experiments using Points of Interest

pre-categorize functions using ~,g (make ranges exact “up to integer values")

for each class, generate finitely many points of interest as follows (here for 7):
e 7 function F, ; induces Pol on a-axis:

® last point in [i,/ + 1] to have same b-value as function on a =i
e first point in [/,i + 1] to have same b-value as function on a =i

e function F,} induces Pol on b-axis:
® b-value of function on a =/, for each integer i
® points transfer transitively (not shown), e.g., last/first points with same value as
Pol also Pol
important: set remains finite in spite of this

generate relation ~py by making influences equivalent if their Pol have the same order
and same relation to integer values

~pol IS good, even on non-elementary schemes with diamonds.
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proof-theoretic approach not feasible due to required backwards reasoning etc.

introduced equivalence relation on influence experiments that (hopefully) allows to
decide =

® pro: does away with rules of calculus
® pro: decidability for a wider range of schemes

® con: complexity likely not very good (many classes even for few functions)

maybe possible to avoid generating all of them/do iterative refinement

questions?
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