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Motivation

background: science classes at secondary education level

• students obtain some basic knowledge on natural phenomenon (e.g., yeast growth,
electrical currents, . . . ), including some data points

• students formulate a hypothesis on further behavior of phenomenon
• increased temperature entails increased yeast growth
• x voltage leads to y current
• light intensity is constant between 11 am and 1 pm

• students validate hypothesis via experiment, go back to previous step if this fails

purpose of project is digital reproduction of this process

reason: some experiments too slow/dangerous/expensive/. . . to do in class

requires:

• formalization of making statements about natural phenomena

• efficient decidability of logical entailment of such statements
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Influences

fix (partially ordered) set of variables V, e.g., temp, yeastAct, volt, . . .

influence experiment is set of continuous functions F : V × V ⇀ (R ⇀ R) s.t.

• domain of all functions is interval

• Fa,c(x) = Fb,c(Fa,b(x)) for all a, b, c ∈ V, x ∈ R (coherence property)

• functions defined only alongside variable order

light

glucose

✓

×

✓

×

glucose

oxygen

light

oxygen

✓
×
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Statements

influence statement S is a I q I ′ b where

• a, b are variables

• I , I ′ are closed intervals with bounds in Q
• q is a behaviour from {↗,↘,→,⇝}

a

b

↗

→

↘

↗
↗↗

→

semantics: F |= S (for S = a I q I ′ b) iff

• Fa,b(x) ∈ I ′ for all x ∈ I , and

• Fa,b “displays behaviour” q on I

examples:

• F |= a [1,2] ↗ [0,2] b

• F ̸|= a [2,3] ↗ [1,3] b

• F ̸|= a [0,3] ⇝ [0,4] b

• F ̸|= a [1,2] → [0,2] b
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Bruse/Lange/Möller: Categorizing Ensembles of Real-Valued Functions 4

Statements

influence statement S is a I q I ′ b where

• a, b are variables

• I , I ′ are closed intervals with bounds in Q
• q is a behaviour from {↗,↘,→,⇝}

a

b

↗

→

↘

↗
↗↗

→

semantics: F |= S (for S = a I q I ′ b) iff

• Fa,b(x) ∈ I ′ for all x ∈ I , and

• Fa,b “displays behaviour” q on I

examples:

• F |= a [1,2] ↗ [0,2] b

• F ̸|= a [2,3] ↗ [1,3] b

• F ̸|= a [0,3] ⇝ [0,4] b

• F ̸|= a [1,2] → [0,2] b
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Schemes and Hypotheses

influence scheme C = set of influence statements

semantics: F |= C if F |= S f.a. S ∈ C

hypothesis H is a statement

H follows from scheme C, written C |= H if F |= C entails F |= H f.a. F

consider scheme C with

• a [1,3] ↗ [1,3] b

• a [3,6] → [0,4] b

• a [5,7] ↘ [1,6] b

have:

• C |= a [2,4] ↗ [1,3] b

• C ̸|= a [2,4] ↗ [2,3] b

a

b

↗

→

↘

↗
↗
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The Calculus of Influence

goal: (efficient) decidability of entailment (|=) (cf. motivation)

first approach: Calculus of Influence (B./Lange/Möller Cade’23 + follow-up)

approximate |= via proof-theoretic rules ⇝ defines provability relation ⊢

(fact)
S

if S ∈ C

(int+)
a I1 q I ′1 b a I2 q′ I ′2 b

a I1∩I2 inf⪯(q,q′) I ′1∩I ′2 b

(trans)
a I q I1 b b I2 q′ I ′ c

a I q⊗q′ I ′ c
if I1 ⊆ I2

a

b

b

c

a

c

↗

↘

→
↗

↘ ↘
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Limits of the Calculus

Theorem 1

On diamond-free, elementary schemes, the Calculus of Influence is complete, i.e.,
C |= H iff C ⊢ H.

• a scheme is diamond-free if variable order has no diamonds like below

• a scheme is elementary if statements only on elementary variable pairs
(i.e. not on a 7→ c , a 7→ d , b 7→ d)

a
b

c
d a b c d

failure for e.g., non-elementary schemes: backwards reasoning

a

b

↗

↗

↗

b

c

↗↗
→

a

c

→
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(i.e. not on a 7→ c , a 7→ d , b 7→ d)

a
b

c
d a b c d

failure for e.g., non-elementary schemes: backwards reasoning

a

b

↗

↗

↗

b

c

↗

↗
→

a

c
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A New Approach

new, direct approach: compute whether C |= H by exhaustive testing

problem: in general, have infinitely many experiments F with F |= C

however: differences often (but not always) negligible w.r.t. H

a

b

↗

the blue, black and red functions are quite similar

the green one is different (it is constant), and so is the brown one (much larger b-value)
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Equivalence for Influence Experiments

want: equivalence relation ∼good between influence experiments s.t.

• for all H (with integer bounds), all F ∼good F ′, have F |= H iff F ′ |= H
i.e., ∼good refines equivalence w.r.t. integer-bounded statements

• ∼ has finite index

• equivalence classes of ∼good are effectively enumerable

• for each equivalence class have an effectively constructable representative

plus ideally: ∼good compatible with coherence property (to be made precise later)

yields: whether C |= H reduces to testing finitely many cases

equivalence relation that satisfies above requirements is good



Bruse/Lange/Möller: Categorizing Ensembles of Real-Valued Functions 9

Equivalence for Influence Experiments

want: equivalence relation ∼good between influence experiments s.t.

• for all H (with integer bounds), all F ∼good F ′, have F |= H iff F ′ |= H
i.e., ∼good refines equivalence w.r.t. integer-bounded statements

• ∼ has finite index

• equivalence classes of ∼good are effectively enumerable

• for each equivalence class have an effectively constructable representative

plus ideally: ∼good compatible with coherence property (to be made precise later)

yields: whether C |= H reduces to testing finitely many cases

equivalence relation that satisfies above requirements is good
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The Case of One Variable Pair

statements already introduce some equivalence: influences that satisfy statement vs.
those that don’t (cf. previous example)

clearly too coarse:

a

b

↗→

↗
→
→
→
→
→

↗↗↗↗

↗↗↗↗
↗↗↗↗

idea: refine this equivalence “up to integer grid precision”

• chop domain of statements to intervals of length 1

• categorize exact range up to integer bounds

example classes above (with representative drawn)
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Bruse/Lange/Möller: Categorizing Ensembles of Real-Valued Functions 10

The Case of One Variable Pair

statements already introduce some equivalence: influences that satisfy statement vs.
those that don’t (cf. previous example)

clearly too coarse:

a

b

↗

→

↗
→
→
→
→
→

↗↗↗↗

↗↗↗↗
↗↗↗↗

idea: refine this equivalence “up to integer grid precision”

• chop domain of statements to intervals of length 1

• categorize exact range up to integer bounds

example classes above (with representative drawn)
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Bruse/Lange/Möller: Categorizing Ensembles of Real-Valued Functions 10

The Case of One Variable Pair

statements already introduce some equivalence: influences that satisfy statement vs.
those that don’t (cf. previous example)

clearly too coarse:

a

b

↗

→

↗
→
→
→

→

→

↗↗↗↗

↗↗↗↗
↗↗↗↗

idea: refine this equivalence “up to integer grid precision”

• chop domain of statements to intervals of length 1

• categorize exact range up to integer bounds

example classes above (with representative drawn)
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One Pair is not Enough

define ∼rng as natural product of equivalence classes “up to integer precision” induced
by individual classes in scheme

Theorem 2

For experiments with one variable pair, ∼rng is good.

unfortunately, not enough in case of several pairs:

a

b

b

c

a

c

↗ ↗ →
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Bruse/Lange/Möller: Categorizing Ensembles of Real-Valued Functions 12

Points of Interest

goal: characterize points related directly to integer-value coordinates

a

b

i ii iii iv v

vi

vii
viii

ix
x

i rightmost a value with same b-value as a = 0

ii leftmost a with same b-value as a = 2

iii rightmost a with same b-value as a = 2

iv a-value where b-value is 2

v leftmost a-value with same b-value as a = 4

vi b-value of a = 0

vii b-value of a = 1

viii b-value of a = 2

ix b-value of a = 3

x b-value of a = 4

exact value of points not important, just their order and relation to integer values
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Bruse/Lange/Möller: Categorizing Ensembles of Real-Valued Functions 12

Points of Interest

goal: characterize points related directly to integer-value coordinates

a

b

i ii iii

iv v

vi

vii
viii

ix
x

i rightmost a value with same b-value as a = 0

ii leftmost a with same b-value as a = 2

iii rightmost a with same b-value as a = 2

iv a-value where b-value is 2

v leftmost a-value with same b-value as a = 4

vi b-value of a = 0

vii b-value of a = 1

viii b-value of a = 2

ix b-value of a = 3

x b-value of a = 4

exact value of points not important, just their order and relation to integer values
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Categorizing Experiments using Points of Interest

pre-categorize functions using ∼rng (make ranges exact “up to integer values”)

for each class, generate finitely many points of interest as follows (here for ↗):
• ↗ function Fa,b induces PoI on a-axis:

• last point in [i , i + 1] to have same b-value as function on a = i
• first point in [i , i + 1] to have same b-value as function on a = i

• function Fa,b induces PoI on b-axis:
• b-value of function on a = i , for each integer i

• points transfer transitively (not shown), e.g., last/first points with same value as
PoI also PoI
important: set remains finite in spite of this

generate relation ∼PoI by making influences equivalent if their PoI have the same order
and same relation to integer values

Conjecture 3

∼PoI is good, even on non-elementary schemes with diamonds.
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Conclusion

problem: want to effectively decide |= for statements on real-valued functions

proof-theoretic approach not feasible due to required backwards reasoning etc.

introduced equivalence relation on influence experiments that (hopefully) allows to
decide |=

• pro: does away with rules of calculus

• pro: decidability for a wider range of schemes

• con: complexity likely not very good (many classes even for few functions)

maybe possible to avoid generating all of them/do iterative refinement

questions?
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