
Graph Neural Networks and Arithmetic Circuits

Laura Strieker
Paper by:

T. Barlag, V. Holzapfel, L. Strieker, J. Virtema, H. Vollmer

Institut für Theoretische Informatik
Leibniz Universität Hannover

03.03.25

1 / 15



Preliminaries

2 / 15



Graph Neural Networks

Labeled graph

▶ Undirected Graph G = (V ,E , gV ) with labeling function gV : V 7→ Rk

▶ Vectors belonging to nodes, called feature vectors

v1v1 = gV (v1) v2 v2 = gV (v2)

v3

v3 = gV (v3)

3 / 15



Graph Neural Networks - AC-GNN

Definition

An L layer aggregate combine graph neural network (AC-GNN) is a tuple
D = ({AGG(i)}Li=1, {COM

(i)}Li=1, {σ(i)}Li=1,CLS), where

▶ {AGG(i)}Li=1: aggregate functions

▶ {COM(i)}Li=1: combine functions

▶ {σ(i)}Li=1: activation functions

▶ CLS: Rk → {0, 1}: classification function

Updating vectors in every layer i ≤ L as follows:

▶ initial feature vector of v : v (0) = gV (v)
▶ for 1 ≤ i ≤ L:

▶ y = AGG(i)
({{

u(i−1) | u ∈ NG(v)
}})

▶ v (i) = σ(i)
(
COM(i)

(
v (i−1), y

))

4 / 15



Graph Neural Networks - AC-GNN

Definition

An L layer aggregate combine graph neural network (AC-GNN) is a tuple
D = ({AGG(i)}Li=1, {COM

(i)}Li=1, {σ(i)}Li=1,CLS), where

▶ {AGG(i)}Li=1: aggregate functions

▶ {COM(i)}Li=1: combine functions

▶ {σ(i)}Li=1: activation functions

▶ CLS: Rk → {0, 1}: classification function

Updating vectors in every layer i ≤ L as follows:

▶ initial feature vector of v : v (0) = gV (v)
▶ for 1 ≤ i ≤ L:

▶ y = AGG(i)
({{

u(i−1) | u ∈ NG(v)
}})

▶ v (i) = σ(i)
(
COM(i)

(
v (i−1), y

))
4 / 15



Graph Neural Networks

Labeled graph

▶ Undirected Graph G = (V ,E , gV ) with labeling function gV : V 7→ Rk

▶ Vectors belonging to nodes, called feature vectors

v1v1 = gV (v1) v2 v2 = gV (v2)

v3

v3 = gV (v3)

v1
(i) = σ(i)

(
COM(i)

(
v1

(i−1),AGG(i)
({{

v2
(i−1), v3

(i−1)
}})))

5 / 15



Graph Neural Networks

Labeled graph

▶ Undirected Graph G = (V ,E , gV ) with labeling function gV : V 7→ Rk

▶ Vectors belonging to nodes, called feature vectors

v1v1 = gV (v1) v2 v2 = gV (v2)

v3

v3 = gV (v3)

v1
(i) = σ(i)

(
COM(i)

(
v1

(i−1),AGG(i)
({{

v2
(i−1), v3

(i−1)
}})))

5 / 15



Rk-Arithmetic Circuits

Definition

Directed acyclic graph with gates that perform arithmetic operations over Rk .

6 9 5

+

×

σ

...

...

Circuit Function Classes

▶ FAC0
Rk : constant depth

& polynomial size

▶ FAC0
Rk [A]: additional

function gates

6 / 15



Rk-Arithmetic Circuits

Definition

Directed acyclic graph with gates that perform arithmetic operations over Rk .

6 9 5

+

×

σ

...

...

But we want to compare arithmetic circuits to
Graph Neural Networks.
How to deal with activation functions?

Circuit Function Classes

▶ FAC0
Rk : constant depth

& polynomial size

▶ FAC0
Rk [A]: additional

function gates

6 / 15



Rk-Arithmetic Circuits

Definition

Directed acyclic graph with gates that perform arithmetic operations over Rk .

6 9 5

+

×

σ

...

...

Circuit Function Classes

▶ FAC0
Rk : constant depth

& polynomial size

▶ FAC0
Rk [A]: additional

function gates

6 / 15



Rk-Arithmetic Circuits

Definition

Directed acyclic graph with gates that perform arithmetic operations over Rk .

6 9 5

+

×

σ

...

...

Circuit Function Classes

▶ FAC0
Rk : constant depth

& polynomial size

▶ FAC0
Rk [A]: additional

function gates

6 / 15



Rk-Arithmetic Circuits

Definition

Directed acyclic graph with gates that perform arithmetic operations over Rk .

6 9 5

+

×

σ

...

...
Nodes in a GNN aggregate the values of their neighbors, regardless of their order.
Our circuits should mimic this behavior.

Circuit Function Classes

▶ FAC0
Rk : constant depth

& polynomial size

▶ FAC0
Rk [A]: additional

function gates

6 / 15



Rk-Arithmetic Circuits

Definition

Directed acyclic graph with gates that perform arithmetic operations over Rk .

6 9 5

+

×

σ

...

...

Circuit Function Classes

▶ tFAC0
Rk : constant

depth & polynomial size

▶ tFAC0
Rk [A]: additional

function gates

t = tailsymmetric

6 / 15



Graph Neural Networks using Circuits

7 / 15



Model of Computation: Circuit-GNN

▶ instead of aggregate/combine functions: circuit families of a specific circuit
function class F

▶ defined set of activation functions A
▶ a function assigning a circuit family and activation function for every layer

▶ “a GNN with circuits in its nodes”

▶ (F,A)-GNN, e.g. (FAC0
R, {id})-GNN

8 / 15



Simulating C-GNNs with Arithmetic Circuits

Theorem

Let N be a
(
tFAC0

Rk , {id} ∪ A
)
-GNN. Then there exists an FAC0

Rk [A]-circuit family C,
such that for all labeled graphs G the circuit family computes the same feature vectors
as the C-GNN.

▶ idea: roll out the circuits to one big one

▶ simulate the circuits of each layer

▶ use function gates for the activation functions in A

9 / 15



Simulating Arithmetic Circuits with C-GNNs

Goal

Let C = (Cn)n∈N be a circuit family of some circuit function class. Show there exists a
C-GNN N that has the output of the circuit family among its feature vectors.

▶ number of layers in N = depth of C.
▶ use the graph structure of the circuit as the input graph of the C-GNN

▶ simulate the computation of the circuit layerwise in the C-GNN and store the
intermediate results in the feature vectors

10 / 15



Circuits without additional function gates

Theorem

FAC0
Rk -circuit family →

(
tFAC0

Rk , {id}
)
-GNN

6 9 5

+

×

...

vin1 vin2 vin3

v+

v×

...

▶ no additional function gates on the
circuit side =⇒ no activation
functions needed in the C-GNN
(besides identity)

11 / 15



Circuits without additional function gates

Theorem

FAC0
Rk -circuit family →

(
tFAC0

Rk , {id}
)
-GNN

6 9 5

+

×

...

vin1 vin2 vin3

v+

v×

...

▶ no additional function gates on the
circuit side =⇒ no activation
functions needed in the C-GNN
(besides identity)

11 / 15



Circuits without additional function gates

Theorem

FAC0
Rk -circuit family →

(
tFAC0

Rk , {id}
)
-GNN

6 9 5

+

×

...

vin1 vin2 vin3

v+

v×

...

▶ no additional function gates on the
circuit side =⇒ no activation
functions needed in the C-GNN
(besides identity)

11 / 15



Circuits with additional function gates

Theorem

FAC0
Rk [A]-circuit family →

(
tFAC0

Rk [A], {id}
)
-GNN

12 / 15



Circuits with additional function gates

Theorem

FAC0
Rk [A]-circuit family →

(
tFAC0

Rk ,A ∪ {id}
)
-GNN

6 5

σ

σ++

×

...

vin1

v
(1)
in1

= 6

vin2

v
(1)
in1

= 5

vσ

vσv+v+

v×

...

▶ more natural to have A as activation
functions than in the nodes

▶ but the function now has to be applied
to every feature vector

▶ we can only simulate circuits in a
function layer form

13 / 15



Circuits with additional function gates

Theorem

FAC0
Rk [A]-circuit family →

(
tFAC0

Rk ,A ∪ {id}
)
-GNN

6 5

σ

σ

+

+

×

...

vin1

v
(1)
in1

= 6

vin2

v
(1)
in1

= 5

vσ

vσ

v+

v+

v×

...

▶ more natural to have A as activation
functions than in the nodes

▶ but the function now has to be applied
to every feature vector

▶ we can only simulate circuits in a
function layer form

13 / 15



Circuits with additional function gates

Theorem

FAC0
Rk [A]-circuit family →

(
tFAC0

Rk ,A ∪ {id}
)
-GNN

6 5

σ

σ

+

+

×

...

vin1

v
(1)
in1

= 6

vin2

v
(1)
in1

= 5

vσ

vσ

v+

v+

v×

...

▶ more natural to have A as activation
functions than in the nodes

▶ but the function now has to be applied
to every feature vector

▶ we can only simulate circuits in a
function layer form

13 / 15



Circuits with additional function gates

Theorem

FAC0
Rk [A]-circuit family →

(
tFAC0

Rk ,A ∪ {id}
)
-GNN

6 5

σ

σ

+

+

×

...

vin1

vin1

v
(1)
in1

= 6

vin2

vin2

v
(1)
in1

= 5

vσ

vσ

v+

v+

v×

...

▶ more natural to have A as activation
functions than in the nodes

▶ but the function now has to be applied
to every feature vector

▶ we can only simulate circuits in a
function layer form

13 / 15



Circuits with additional function gates

Theorem

FAC0
Rk [A]-circuit family →

(
tFAC0

Rk ,A ∪ {id}
)
-GNN

6 5

σ

σ+

+

×

...

vin1

v
(1)
in1

= 6

vin2

v
(1)
in1

= 5

vσ

vσv+

v+

v×

...

▶ more natural to have A as activation
functions than in the nodes

▶ but the function now has to be applied
to every feature vector

▶ we can only simulate circuits in a
function layer form

13 / 15



Circuits with additional function gates

Theorem

FAC0
Rk [A]-circuit family →

(
tFAC0

Rk ,A ∪ {id}
)
-GNN

6 5

σ σ

++

×

...

vin1

v
(1)
in1

= 6

vin2

v
(1)
in1

= 5

vσ vσ

v+v+

v×

...

▶ more natural to have A as activation
functions than in the nodes

▶ but the function now has to be applied
to every feature vector

▶ we can only simulate circuits in a
function layer form

13 / 15



Circuits with additional function gates

Theorem

f FAC0
Rk [A]-circuit family →

(
tFAC0

Rk ,A ∪ {id}
)
-GNN

6 5

σ σ

++

×

...

vin1

v
(1)
in1

= 6

vin2

v
(1)
in1

= 5

vσ vσ

v+v+

v×

...

▶ more natural to have A as activation
functions than in the nodes

▶ but the function now has to be applied
to every feature vector

▶ we can only simulate circuits in a
function layer form

13 / 15



Conclusion and Open Questions

14 / 15



Conclusion and Open Questions

▶ correspondence between arithmetic circuits and a generalization of graph neural
networks using circuits
▶ Can the imposed restrictions be made on “both sides of the simulation”?

▶ circuit function classes that characterize the computational power of a C-GNN
▶ complexity of these classes
▶ Which functions are “more” complex than others?

Thank You

15 / 15



Conclusion and Open Questions

▶ correspondence between arithmetic circuits and a generalization of graph neural
networks using circuits
▶ Can the imposed restrictions be made on “both sides of the simulation”?

▶ circuit function classes that characterize the computational power of a C-GNN
▶ complexity of these classes
▶ Which functions are “more” complex than others?

Thank You

15 / 15



Conclusion and Open Questions

▶ correspondence between arithmetic circuits and a generalization of graph neural
networks using circuits
▶ Can the imposed restrictions be made on “both sides of the simulation”?

▶ circuit function classes that characterize the computational power of a C-GNN
▶ complexity of these classes
▶ Which functions are “more” complex than others?

Thank You

15 / 15


	Preliminaries
	Graph Neural Networks
	Arithmetic Circuits

	Graph Neural Networks using Circuits
	Circuit-GNNs
	Simulating C-GNNs with Arithmetic Circuits
	Simulating Arithmetic Circuits with C-GNNs

	Conclusion and Open Questions

