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Graph Neural Networks

Labeled graph

» Undirected Graph & = (V, E, gy) with labeling function gy : V — RK

» Vectors belonging to nodes, called feature vectors

vi = gv(v1) @ V_2=gv(V2)

V3 = gv(V3)
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Graph Neural Networks - AC-GNN

An L layer aggregate combine graph neural network (AC-GNN) is a tuple
D = ({AGG L {COMNE  {o(D}L  'CLS), where

> {AGG(i)},-Lzlz aggregate functions

> {COMYL . combine functions

> {o()}L_: activation functions

» CLS: R¥ — {0,1}: classification function
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An L layer aggregate combine graph neural network (AC-GNN) is a tuple
D = ({AGGW}L {COMDYE | {o(D}L | CLS), where

> {AGG(i)},-Lzlz aggregate functions

> {COMYL . combine functions

> {o()}L_: activation functions

» CLS: R¥ — {0,1}: classification function
Updating vectors in every layer i < L as follows:

> initial feature vector of v: ¥(%) = gy/(v)
> forl <ij<L:

> 7 =AGG" ({3 | ue No(v)})
> 70 = o0 (com® (vi-1,5))
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Graph Neural Networks

Labeled graph

» Undirected Graph & = (V, E, gy/) with labeling function gy : V — RX

» Vectors belonging to nodes, called feature vectors

vi = gv(v1) ° V_2=gv(V2)

vz = gv(v3)

70 = 500 (convl("> (71("—1>, AGGH) ({{v—z(i—l)%(i—l)}})»
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RK_Arithmetic Circuits

Definition

Directed acyclic graph with gates that perform arithmetic operations over RX.

Circuit Function Classes

> FAC]%k: constant depth
& polynomial size
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RK_Arithmetic Circuits

Definition

Directed acyclic graph with gates that perform arithmetic operations over R

Circuit Function Classes

> FAC?Rk: constant depth
& polynomial size

But we want to compare arithmetic circuits to
Graph Neural Networks.
How to deal with activation functions?
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RK_Arithmetic Circuits

Directed acyclic graph with gates that perform arithmetic operations over RX.

6 9 5
e Circuit Function Classes
° > FAC]%k: constant depth
& polynomial size
> FACS[A]: additional
e function gates

Nodes in a GNN aggregate the values of their neighbors, regardless of their order.
Our circuits should mimic this behavior.
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RK_Arithmetic Circuits

Directed acyclic graph with gates that perform arithmetic operations over RX.

6 Circuit Function Classes

> tFAC]%k . constant

° depth & polynomial size

> (FACD,[A]: additional
function gates

t = tailsymmetric
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Model of Computation: Circuit-GNN

» instead of aggregate/combine functions: circuit families of a specific circuit
function class §

defined set of activation functions A

>
» a function assigning a circuit family and activation function for every layer
> “a GNN with circuits in its nodes”

>

(3, A)-GNN, e.g. (FACS, {id})-GNN
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Simulating C-GNNs with Arithmetic Circuits

Theorem

Let N be a (tFACY,, {id} U A)-GNN. Then there exists an FAC, [A]-circuit family C,

such that for all labeled graphs & the circuit family computes the same feature vectors
as the C-GNN.

P idea: roll out the circuits to one big one
» simulate the circuits of each layer

» use function gates for the activation functions in A
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Simulating Arithmetic Circuits with C-GNNs

Let C = (Cp)nen be a circuit family of some circuit function class. Show there exists a
C-GNN N that has the output of the circuit family among its feature vectors.

» number of layers in N = depth of C.
» use the graph structure of the circuit as the input graph of the C-GNN

» simulate the computation of the circuit layerwise in the C-GNN and store the
intermediate results in the feature vectors
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Circuits without additional function gates

Theorem
FAC),~circuit family — (tFAC,, {id})-GNN
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Circuits without additional function gates

Theorem
FAC),~circuit family — (tFAC,, {id})-GNN

A ONORC

@ » no additional function gates on the
circuit side = no activation
° functions needed in the C-GNN
(besides identity)
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Circuits with additional function gates

FACY, [Al-circuit family — (tFACS,[A], {id})-GNN
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Circuits with additional function gates

Theorem
FACY, [A]-circuit family — (tFACS,, AU {id})-GNN
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Circuits with additional function gates

Theorem
fFACY, [A]-circuit family — (tFACY,, AU {id})-GNN

W-e s
6 5 @ » more natural to have A as activation
l functions than in the nodes
/U\ e o) » but the function now has to be applied
},/ 7 to every feature vector
@ @ P> we can only simulate circuits in a
function layer form

13/15



14 /15



Conclusion and Open Questions

> correspondence between arithmetic circuits and a generalization of graph neural
networks using circuits

» Can the imposed restrictions be made on “both sides of the simulation”?
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Conclusion and Open Questions

> correspondence between arithmetic circuits and a generalization of graph neural
networks using circuits

» Can the imposed restrictions be made on “both sides of the simulation”?
» circuit function classes that characterize the computational power of a C-GNN

» complexity of these classes
» Which functions are “more” complex than others?

Thank You
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