Graph Neural Networks and Arithmetic Circuits

Laura Strieker Paper by: T. Barlag, V. Holzapfel, L. Strieker, J. Virtema, H. Vollmer

Institut für Theoretische Informatik Leibniz Universität Hannover

03.03.25

Preliminaries

Labeled graph

- ▶ Undirected Graph $\mathfrak{G} = (V, E, g_V)$ with labeling function $g_V : V \mapsto \mathbb{R}^k$
- Vectors belonging to nodes, called *feature vectors*

$$\overline{v_1} = g_V(v_1) \underbrace{v_1}_{V_3} \underbrace{v_2}_{V_3} = g_V(v_2)$$

$$\overline{v_3}_{V_3} = g_V(v_3)$$

An *L* layer aggregate combine graph neural network (AC-GNN) is a tuple $\mathcal{D} = (\{AGG^{(i)}\}_{i=1}^{L}, \{COM^{(i)}\}_{i=1}^{L}, \{\sigma^{(i)}\}_{i=1}^{L}, CLS)$, where

- {AGG⁽ⁱ⁾} $_{i=1}^{L}$: aggregate functions
- $\{COM^{(i)}\}_{i=1}^{L}$: combine functions
- $\{\sigma^{(i)}\}_{i=1}^{L}$: activation functions
- CLS: $\mathbb{R}^k \to \{0,1\}$: classification function

An L layer aggregate combine graph neural network (AC-GNN) is a tuple $\mathcal{D} = (\{AGG^{(i)}\}_{i=1}^{L}, \{COM^{(i)}\}_{i=1}^{L}, \{\sigma^{(i)}\}_{i=1}^{L}, CLS)$, where

- {AGG⁽ⁱ⁾} $_{i=1}^{L}$: aggregate functions
- $\{COM^{(i)}\}_{i=1}^{L}$: combine functions
- $\{\sigma^{(i)}\}_{i=1}^{L}$: activation functions

• CLS: $\mathbb{R}^k \to \{0,1\}$: classification function

Updating vectors in every layer $i \leq L$ as follows:

▶ initial feature vector of v: $\overline{v}^{(0)} = g_V(v)$

► for
$$1 \le i \le L$$
:
► $\overline{y} = \operatorname{AGG}^{(i)} \left(\{\!\!\{ \overline{u}^{(i-1)} \mid u \in N_{\mathfrak{G}}(v) \}\!\!\} \right)$
► $\overline{v}^{(i)} = \sigma^{(i)} \left(\operatorname{COM}^{(i)} \left(\overline{v}^{(i-1)}, \overline{y} \right) \right)$

Labeled graph

▶ Undirected Graph $\mathfrak{G} = (V, E, g_V)$ with labeling function $g_V : V \mapsto \mathbb{R}^k$

Vectors belonging to nodes, called *feature vectors*

$$\overline{v_1} = g_V(v_1) \underbrace{v_1}_{V_3} \underbrace{v_2}_{V_2} = g_V(v_2)$$

$$\overline{v_3}$$

$$\overline{v_3} = g_V(v_3)$$

Labeled graph

▶ Undirected Graph $\mathfrak{G} = (V, E, g_V)$ with labeling function $g_V : V \mapsto \mathbb{R}^k$

Vectors belonging to nodes, called *feature vectors*

$$\overline{v_1} = g_V(v_1) \underbrace{v_1}_{V_3} \underbrace{v_2}_{V_2} = g_V(v_2)$$

$$\overline{v_3}$$

$$\overline{v_3} = g_V(v_3)$$

$$\overline{v_1}^{(i)} = \sigma^{(i)} \left(\mathsf{COM}^{(i)} \left(\overline{v_1}^{(i-1)}, \mathsf{AGG}^{(i)} \left(\left\{ \overline{v_2}^{(i-1)}, \overline{v_3}^{(i-1)} \right\} \right) \right) \right)$$

Directed acyclic graph with gates that perform arithmetic operations over \mathbb{R}^k .

Circuit Function Classes

FAC⁰_{Rk}: constant depth
 & polynomial size

\mathbb{R}^{k} -Arithmetic Circuits

Definition

Directed acyclic graph with gates that perform arithmetic operations over \mathbb{R}^k .

But we want to compare arithmetic circuits to Graph Neural Networks. How to deal with activation functions?

Circuit Function Classes

FAC⁰_{Rk}: constant depth
 & polynomial size

Directed acyclic graph with gates that perform arithmetic operations over \mathbb{R}^k .

Circuit Function Classes

FAC⁰_{Rk}: constant depth
 & polynomial size

Directed acyclic graph with gates that perform arithmetic operations over \mathbb{R}^k .

Circuit Function Classes

- FAC⁰_{R^k}: constant depth
 & polynomial size
- ► FAC⁰_{ℝk}[A]: additional function gates

Directed acyclic graph with gates that perform arithmetic operations over \mathbb{R}^k .

Circuit Function Classes

- FAC⁰_{R^k}: constant depth
 & polynomial size
- ► FAC⁰_{ℝk}[A]: additional function gates

Nodes in a GNN aggregate the values of their neighbors, regardless of their order. Our circuits should mimic this behavior.

Directed acyclic graph with gates that perform arithmetic operations over \mathbb{R}^k .

Circuit Function Classes

- tFAC⁰_{Rk}: constant
 depth & polynomial size
- ► tFAC⁰_{ℝ^k}[A]: additional function gates

t = *tailsymmetric*

Graph Neural Networks using Circuits

- instead of aggregate/combine functions: circuit families of a specific circuit function class f
- defined set of activation functions \mathcal{A}
- > a function assigning a circuit family and activation function for every layer
- "a GNN with circuits in its nodes"
- $(\mathfrak{F}, \mathcal{A})$ -GNN, e.g. $(FAC^0_{\mathbb{R}}, \{id\})$ -GNN

Let \mathcal{N} be a $(tFAC^0_{\mathbb{R}^k}, \{id\} \cup \mathcal{A})$ -GNN. Then there exists an $FAC^0_{\mathbb{R}^k}[\mathcal{A}]$ -circuit family \mathcal{C} , such that for all labeled graphs \mathfrak{G} the circuit family computes the same feature vectors as the C-GNN.

- idea: roll out the circuits to one big one
- simulate the circuits of each layer
- \blacktriangleright use function gates for the activation functions in ${\cal A}$

Goal

Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of some circuit function class. Show there exists a C-GNN \mathcal{N} that has the output of the circuit family among its feature vectors.

- number of layers in $\mathcal{N} = \text{depth of } \mathcal{C}$.
- use the graph structure of the circuit as the input graph of the C-GNN
- simulate the computation of the circuit layerwise in the C-GNN and store the intermediate results in the feature vectors

$$\mathrm{FAC}^{0}_{\mathbb{R}^{k}}\text{-}\textit{circuit family} \rightarrow \left(\mathrm{tFAC}^{0}_{\mathbb{R}^{k}}, \{\mathrm{id}\}\right)\text{-}\textit{GNN}$$

$$\operatorname{FAC}^{0}_{\mathbb{R}^{k}}$$
-circuit family $\rightarrow \left(t\operatorname{FAC}^{0}_{\mathbb{R}^{k}}, \{\operatorname{id}\}\right)$ -GNN

$$\operatorname{FAC}^{0}_{\mathbb{R}^{k}}$$
-circuit family $\rightarrow \left(t\operatorname{FAC}^{0}_{\mathbb{R}^{k}}, \{\operatorname{id}\}\right)$ -GNN

 no additional function gates on the circuit side => no activation functions needed in the C-GNN (besides identity)

$\mathrm{FAC}^{0}_{\mathbb{R}^{k}}[\mathcal{A}]\text{-}\mathit{circuit family} \rightarrow \big(t\mathrm{FAC}^{0}_{\mathbb{R}^{k}}[\mathcal{A}], \{\mathrm{id}\}\big)\text{-}\mathit{GNN}$

Theorem

$\mathrm{FAC}^{0}_{\mathbb{R}^{k}}[\mathcal{A}]\text{-}\mathit{circuit family} \rightarrow \big(t\mathrm{FAC}^{0}_{\mathbb{R}^{k}}, \mathcal{A} \cup \{\mathrm{id}\}\big)\text{-}\mathit{GNN}$

more natural to have A as activation functions than in the nodes

Theorem

$\mathrm{FAC}^0_{\mathbb{R}^k}[\mathcal{A}]\text{-}\mathit{circuit family} \rightarrow \big(t\mathrm{FAC}^0_{\mathbb{R}^k}, \mathcal{A} \cup \{\mathrm{id}\}\big)\text{-}\mathit{GNN}$

- more natural to have A as activation functions than in the nodes
- but the function now has to be applied to every feature vector

Theorem

$\mathrm{FAC}^{0}_{\mathbb{R}^{k}}[\mathcal{A}]\text{-}\textit{circuit family} \rightarrow \big(t\mathrm{FAC}^{0}_{\mathbb{R}^{k}}, \mathcal{A} \cup \{\mathrm{id}\}\big)\text{-}\textit{GNN}$

- more natural to have A as activation functions than in the nodes
- but the function now has to be applied to every feature vector

Theorem

$\mathrm{FAC}^{0}_{\mathbb{R}^{k}}[\mathcal{A}]\text{-}\textit{circuit family} \rightarrow \big(t\mathrm{FAC}^{0}_{\mathbb{R}^{k}}, \mathcal{A} \cup \{\mathrm{id}\}\big)\text{-}\textit{GNN}$

- more natural to have A as activation functions than in the nodes
- but the function now has to be applied to every feature vector

$$\mathrm{FAC}^{0}_{\mathbb{R}^{k}}[\mathcal{A}]\text{-}\mathit{circuit family} \rightarrow \big(t\mathrm{FAC}^{0}_{\mathbb{R}^{k}}, \mathcal{A} \cup \{\mathrm{id}\}\big)\text{-}\mathit{GNN}$$

- more natural to have A as activation functions than in the nodes
- but the function now has to be applied to every feature vector

$\mathrm{FAC}^{0}_{\mathbb{R}^{k}}[\mathcal{A}]\text{-}\mathit{circuit family} \rightarrow \big(\mathit{t}\mathrm{FAC}^{0}_{\mathbb{R}^{k}}, \mathcal{A} \cup \{\mathrm{id}\}\big)\text{-}\mathit{GNN}$

- more natural to have A as activation functions than in the nodes
- but the function now has to be applied to every feature vector
- we can only simulate circuits in a function layer form

$${}^{f}\mathrm{FAC}^{0}_{\mathbb{R}^{k}}[\mathcal{A}]\text{-}\textit{circuit family} \rightarrow \big(t\mathrm{FAC}^{0}_{\mathbb{R}^{k}}, \mathcal{A} \cup \{\mathrm{id}\}\big)\text{-}\textit{GNN}$$

- more natural to have A as activation functions than in the nodes
- but the function now has to be applied to every feature vector
- we can only simulate circuits in a function layer form

Conclusion and Open Questions

- correspondence between arithmetic circuits and a generalization of graph neural networks using circuits
 - Can the imposed restrictions be made on "both sides of the simulation"?

- correspondence between arithmetic circuits and a generalization of graph neural networks using circuits
 - Can the imposed restrictions be made on "both sides of the simulation"?
- circuit function classes that characterize the computational power of a C-GNN
 - complexity of these classes
 - Which functions are "more" complex than others?

- correspondence between arithmetic circuits and a generalization of graph neural networks using circuits
 - Can the imposed restrictions be made on "both sides of the simulation"?
- circuit function classes that characterize the computational power of a C-GNN
 - complexity of these classes
 - Which functions are "more" complex than others?

Thank You