On the Parameterized Complexity of Graph Modification towards First-Order Logic Properties

Theorietag 2025 Workshop on Algorithms, Complexity and Logic

Marlene Gründel

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Marlene Gründel (University of Jena)

On the Parameterized Complexity of Graph Modification towards First-Order Logic Properties

3

イロト 不得 トイヨト イヨト

Graph Modification Problems

Let P be a graph property (e.g. being clique, having diameter at most two, not containing any triangle, ...).

GRAPH MODIFICATION TOWARDS PROPERTY P

Input:A graph G and $k \in \mathbb{N}$.Question:Do k modifications suffice to make G satisfy P?

Examples for modifications:

- Vertex Removal towards Property P
- **Edge Removal towards Property** P
- **Edge Completion towards Property** P
- EDGE EDITING TOWARDS PROPERTY P (Edge Removal + Completion)

Marlene Gründel (University of Jena)

Two Kinds of Complexity

Marlene Gründel (University of Jena)

Graph Modification Problems

GRAPH MODIFICATION TOWARDS FOL-formula Φ

Input:	A graph G and $k \in \mathbb{N}$.
Question:	Do k modifications suffice to make G satisfy Φ ?

Here, an FOL-formula Φ

- contains variables that correspond to vertices,
- ▶ may consist of adjacency (~) and identity (=) predicates,
- is assumed to be in Prenex Normal Form, i.e. all quantifiers (∀, ∃) are pushed to the left.

Example: VERTEX COVER

Let $\Phi := \forall x \forall y (x \not\sim y)$.

Vertex Removal towards Φ

Input:A graph G and $k \in \mathbb{N}$.Question:Does there exist a set F of at most k vertices
such that $G \setminus F$ satisfies Φ ?

This problem is known as VERTEX COVER. It is NP-complete [Karp '72] and can be decided in time $1.25284^k \cdot n^{\mathcal{O}(1)}$ [Harris, Narayanaswamy '24].

Example: 2-CLUB

Let $\Phi := \forall x \forall y \exists z (x = y) \lor (x \sim y) \lor ((x \sim z) \land (z \sim y)).$

Vertex Removal towards Φ

Input:A graph G and $k \in \mathbb{N}$.Question:Does there exist a set F of at most k vertices
such that $G \setminus F$ satisfies Φ ?

This problem is known as 2-CLUB.

It is NP-complete [Balasundaram, Butenko, Trukhanov '05] and cannot be decided in time $(2 - \epsilon)^k \cdot n^{\mathcal{O}(1)}$, unless SETH fails [Hartung, Komusiewicz, Nichterlein '15].

Previous Work

Complexity of graph modification problems is very well-studied [Lewis, Yannakakis '80; Crespelle, Drange, Fomin, Golovach '23], but rarely from the descriptive perspective.

[Fomin, Golovach, Thilikos '20] identify FOL-formulas Φ for which the problems

- Vertex Removal towards Φ ,
- ► Edge Removal towards Φ ,
- Edge Completion towards Φ and
- Edge Editing towards Φ

are fixed-parameter tractable (FPT) or presumably not FPT, based on the prefix class of Φ .

This Work

More fine-grained analysis in terms of

 Computational Complexity: distinguish various classes of (parameterized) complexity.

Descriptive Complexity:

define new prefix classes based on the number of variables within quantifier blocks.

This Work: Classes of Parameterized Complexity

Marlene Gründel (University of Jena)

This Work: 'Fine-Grained' Arithmetical hierarchy

where ϕ is a quantifier-free FOL-formula and $|X| = q_1, |Y| = q_2, |Z| = q_3$ with $q_1, q_2, q_3 \in \mathbb{N}^+$.

Example: If $\Phi := \forall x \forall y \exists z \ (x = y) \lor (x \sim y) \lor ((x \sim z) \land (y \sim z))$, then $\Phi \in \Pi_2^{(2,1)}$.

Marlene Gründel (University of Jena)

		Parameterized Complexity of VERTEX REMOVAL TOWARDS Φ parameterized by deletion budget k				
		Delumential	Polynomial Kernel	FPT	W[2]-hard	
		time algorithm	no 2 ^{o(n+m)} algorithm, unless	no 2 ^{o(n+m)} algorithm, unless	no $n^{o(k)} G ^{\mathcal{O}(1)}$ algorithm, unless	
			ETH fails	ETH fails	W[1] = FPT	
tifier in Φ	1 2	$\Sigma_1,\ \Pi_1^{(1)} \ \Sigma_{2^{(\geq 1,1)}},\ \Pi_{2^{(1,\geq 1)}}^{(1,\geq 1)}$	$\Pi_1^{(\geq 2)}$	$Σ_2^{(\geq 1, \geq 2)}$, Π $_2^{(\geq 2, \geq 1)}$		
[≜] quan Ilocks	3	$\Sigma_3^{(\geq 1,1,\geq 1)}$		$\Sigma_3^{(\geq 1, \geq 2, \geq 1)}$	Π ₃	
P # 2	≥ 4				all	

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Marlene Gründel (University of Jena)

	Parameterized Complexity of VERTEX REMOVAL TOWARDS Φ parameterized by deletion budget k				
Polynomial Kernel FPT			FPT	W[2]-hard	
	Polynomial- time algorithm	no 2 ^{o(n+m)} algorithm, unless ETH fails	no 2 ^{o(n+m)} algorithm, unless ETH fails	no $n^{o(k)} G ^{\mathcal{O}(1)}$ algorithm, unless ${ m W}[1]={ m FPT}$	
$\begin{array}{c} 1\\ \# \text{quantifier}\\ \text{blocks in } \Phi\\ 2\\ 8\\ 8\\ 7\\ 7\\ 8\\ 8\\ 8\\ 7\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$	$ \begin{vmatrix} \boldsymbol{\Sigma}_{1}, \ \boldsymbol{\Pi}_{1}^{(1)} \\ \boldsymbol{\Sigma}_{2}^{(\geq 1, 1)}, \ \boldsymbol{\Pi}_{2}^{(1, \geq 1)} \\ \boldsymbol{\Sigma}_{3}^{(\geq 1, 1, \geq 1)} \end{vmatrix} $	$\Pi_1^{(\geq 2)}$	$\Sigma_{2}^{(\geq 1, \geq 2)}, \Pi_{2}^{(\geq 2, \geq 1)}$ $\Sigma_{3}^{(\geq 1, \geq 2, \geq 1)}$	П ₃ all	

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Marlene Gründel (University of Jena)

	Parameteri	Parameterized Complexity of VERTEX REMOVAL TOWARDS Φ parameterized by deletion budget k				
	Polynomial- time algorithm	Polynomial Kernel no 2 ^{o(n+m)} algorithm, unless ETH fails	FPT no 2 ^{o(n+m)} algorithm, unless ETH fails	W[2]-hard no $n^{o(k)} G ^{\mathcal{O}(1)}$ algorithm, unless W[1] = FPT		
$\begin{array}{c} 1\\ \# quantifier\\ blocks in \Phi\\ 2\\ 8\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	$ \begin{array}{c c} \Sigma_{1}, & \Pi_{1}^{(1)} \\ \Sigma_{2}^{(\geq 1, 1)}, & \Pi_{2}^{(1, \geq 1)} \\ \Sigma_{3}^{(\geq 1, 1, \geq 1)} \end{array} $	$\Box_1^{(\geq 2)}$	$\begin{array}{c} \Sigma_{2}^{(\geq 1,\geq 2)}\text{, }\Pi_{2}^{(\geq 2,\geq 1)}\\ \Sigma_{3}^{(\geq 1,\geq 2,\geq 1)} \end{array}$	П ₃ all		

Marlene Gründel (University of Jena)

	Parameterized Complexity of VERTEX REMOVAL TOWARDS Φ parameterized by deletion budget k			
	Polynomial- time algorithm	Polynomial Kernel no 2 ^{o(n+m)} algorithm, unless ETH fails	FPT no 2 ^{o(n+m)} algorithm, unless ETH fails	W[2]-hard no $n^{o(k)} G ^{\mathcal{O}(1)}$ algorithm, unless W[1] = FPT
$\begin{array}{c} 1\\ \# quantifier\\ blocks in \Phi\\ & 3\\ & 5\\ & 4\end{array}$	$\begin{array}{c} \Sigma_{1},\Pi_{1}^{\left(1\right)}\\ \Sigma_{2}^{\left(\geq1,1\right)},\Pi_{2}^{\left(1,\geq1\right)}\\ \Sigma_{3}^{\left(\geq1,1,\geq1\right)}\end{array}$	$\Pi_1^{(\geq 2)}$	$\begin{array}{c} \Sigma_{2}^{(\geq 1,\geq 2)}\text{, }\Pi_{2}^{(\geq 2,\geq 1)}\\ \Sigma_{3}^{(\geq 1,\geq 2,\geq 1)}\end{array}$	П ₃ all

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Marlene Gründel (University of Jena)

		Parameterized Complexity of VERTEX REMOVAL TOWARDS Φ parameterized by deletion budget k				
			Polynomial Kernel	FPT	W[2]-hard	
		Polynomial- time algorithm	no 2 ^{o(n+m)} algorithm, unless ETH fails	no 2 ^{o(n+m)} algorithm, unless ETH fails	no $n^{o(k)} G ^{\mathcal{O}(1)}$ algorithm, unless $W[1]=FPT$	
antifier ks in Φ	1 2	$\begin{array}{c} \Sigma_{1},\ \Pi_{1}^{(1)} \\ \Sigma_{2}^{(\geq 1,1)},\ \Pi_{2}^{(1,\geq 1)} \end{array}$	$\Pi_1^{(\frac{1}{2})}$	$Σ_2^{(\geq 1, \geq 2)}, Π_2^{(\geq 2, \geq 1)}$		
#qu bloc	3	$\Sigma_3^{(\geq 1,1,\geq 1)}$		$\Sigma_3^{(\geq 1, \geq 2, \geq 1)}$	Π_3	
	≥ 4				all	

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = のへで

Marlene Gründel (University of Jena)

	Parameter	Parameterized Complexity of VERTEX REMOVAL TOWARDS Φ parameterized by deletion budget k			
		Polynomial Kernel	FPT	W[2]-hard	
	Polynomial- time algorithm	no 2 ^{o(n+m)} algorithm, unless ETH fails	no 2 ^{o(n+m)} algorithm, unless ETH fails	no $n^{o(k)} G ^{\mathcal{O}(1)}$ algorithm, unless $\mathrm{W}[1]=FPT$	
$\begin{array}{c} 1\\ \# quantifier\\ blocks in \Phi\\ 3\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	$ \begin{array}{c c} \Sigma_{1}, \ \Pi_{1}^{(1)} \\ \Sigma_{2}^{(\geq 1, 1)}, \ \Pi_{2}^{(1, \geq 1)} \\ \Sigma_{3}^{(\geq 1, 1, \geq 1)} \end{array} \\ \end{array} $	$\Pi_1^{(\geq 2)}$	$ \begin{array}{c} \Sigma_{2}^{(\geq 1,\geq 2)} \text{, } \Pi_{2}^{(\geq 2,\geq 1)} \\ \Sigma_{3}^{(\geq 1,\geq 2,\geq 1)} \end{array} \\$	П ₃ all	

Marlene Gründel (University of Jena)

Results — Edge Removal/Editing towards Φ

		Parameterized Complexity of EDGE REMOVAL TOWARDS Φ parameterized by deletion budget k				
		Polynomial- time algorithm	Polynomial Kernel no 2 ^{o(n+m)} algorithm, unless ETH fails	FPT no 2 ^{o(n+m)} algorithm, unless ETH fails	W[2]-hard no $n^{o(k)} G ^{\mathcal{O}(1)}$ algorithm, unless W[1] = FPT	
#quantifier blocks in Φ	1 2 3 ≥ 4	$\begin{array}{c} \Sigma_{1},\Pi_{1}^{(\leq 2)} \\ \Sigma_{2}^{(\geq 1,1)},\Pi_{2}^{(1,1)} \end{array}$	Π ₁ ⁽³⁾	$\begin{array}{c} \Pi_1^{(\geq 4)} \\ \Sigma_2^{(\geq 1,\geq 2)} \end{array}$	$\Pi_2^{(\geq 1,\geq 2)},\ \Pi_2^{(\geq 2,\geq 1)}$ $\Sigma_3,\ \Pi_3$ all	

(ロ) (四) (三) (三) (三) (○) (○)

Marlene Gründel (University of Jena)

Conclusion

- studied interplay between descriptive and computational complexity regarding graph modification problems
- identified features beyond traditional prefix classes that indicate computational complexity like the number of variables per quantifier block

Future Work

- find other structural features of FOL-formulas and study how they influence the complexity of graph modification
- analyse the complexity of graph modification problems when the desired graph property is expressed in higher-order logic (e.g. Monadic Second-Order Logic)