On the Tightness of the Standard Lower Bound in the Two-Machine Routing Open Shop

Dr. Ilya Chernykh

Sobolev Institute of Mathematics, Novosibirsk

87th Workshop on Algorithms, Complexity and Logic (Theorietag) Jena 4.03.2025

> The research was supported by Russian Science Foundation grant N 22-71-10015

> > <ロト <回ト < 注ト < 注ト = 注

Open shop scheduling problem $Om || C_{max}$

Input

- Machines $\{M_1, \ldots, M_m\}$
- Jobs $\{J_1, \ldots, J_n\}$
- Operations $\{O_{ji}|1 \leq i \leq m, 1 \leq j \leq n\}.$
- Processing times $\{p_{ji}|1 \leq i \leq m, 1 \leq j \leq n\}.$

Constraints

- Operations of each machine can be processed in arbitrary order.
- Operations of the same job or performed by the same machine can not overlap in time

Schedule

 $S = \{s_{ji}\}, \text{ operation } O_{ji} \text{ is process within } [s_{ji}, C_{ji}],$

$$C_{ji}=s_{ji}+p_{ji}.$$

Goal

Compose a feasible schedule with minimum makespan ($C_{\max} = \max_{j,i} c_{ji}$).

Example

How to shoe horses? Each horse (job) needs to have each leg shod, and a horse cannot stand on less than three legs. Four blacksmiths (machines) are specialists in shoeing a specific leg (one — the right front, another – the left back, etc.). The time for each such operation is known in advance.

How fast can *n* horses be shod?

Another example

Medical examination. A group of patients (jobs) needs to be examined by a set of doctors (machines). The time of each patient's appointment with each doctor is known in advance. The goal is to make a schedule in which the completion time of the last appointment is minimized. Delays in the transfer of patients from one doctor's office to another can be neglected.

- $O2||C_{\max}$ is solvable in O(n) by
 - T. Gonzalez, S. Sahni 1976
 - O M. Pinedo, L. Schrage 1982
 - O. de Werra 1989
 - A. Soper 2013
 - A. Khramova, Ch 2021
- O3||C_{max} is NP-hard [Gonzalez, Sahni 1976]

	J_1	J_2		J _n	
M_1 M_2	p_{11}	p ₂₁ p ₂₂		p_{n1}	
M_2	p_{12}	<i>p</i> ₂₂	•••	p _{n2}	
÷	÷			÷	
M_m	p_{1m}	p _{2m}		p _{nm}	

5/16

문 > 문

				J _n	
M ₁ M ₂	p_{11}	p_{21}		р _{п1} р _{п2}	ℓ_1
M_2	p_{12}	<i>p</i> ₂₂	•••	p _{n2}	ℓ_2
÷	•			÷	:
M_m	p_{1m}	p_{2m}		p _{nm}	ℓ_m

문어 문

	J_1	J_2		J _n	Σ
M_1 M_2	<i>p</i> ₁₁	p_{21}		p_{n1}	ℓ_1
M_2	<i>p</i> ₁₂	<i>p</i> ₂₂	• • •	p_{n2}	ℓ_2
÷	:			÷	÷
M_m	p_{1m}	p _{2m}		p _{nm}	ℓ_m
Σ	d_1	<i>d</i> ₂		dn	

문어 문

	J_1	J_2		J _n	Σ
M_1 M_2	p_{11}	p_{21}		p_{n1}	ℓ_1
M_2	p_{12}	<i>p</i> ₂₂	• • •	p_{n2}	ℓ_2
÷	:			÷	÷
M_m	p_{1m}	p _{2m}		p _{nm}	ℓ_m
Σ	d_1	<i>d</i> ₂		dn	

Standard lower bound

$$C^*_{\max} \geqslant \bar{C} \doteq \max_{i,j} \{\ell_i, d_j\}.$$

3 x 3

How tight is \bar{C} ?

$$m = 2$$

For $O2||C_{max}|$

$$C^*_{\max} = \bar{C}.$$

An instance for
$$m = 3$$

$$\begin{aligned} J_1 &= (1, 1, 1), J_2 &= (2, 0, 0), \\ J_3 &= (0, 2, 0), J_4 &= (0, 0, 2). \end{aligned}$$

▶ ★ 문 ▶ ★ 문 ▶ ... 문

How tight is \bar{C} ?

$$m = 2$$

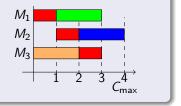
For $O2||C_{max}|$

$$C^*_{\max} = \bar{C}.$$

An instance for m = 3

$$J_1 = (1, 1, 1), J_2 = (2, 0, 0),$$

 $J_3 = (0, 2, 0), J_4 = (0, 0, 2).$



< ∃ >

æ

How tight is \bar{C} ?

$$m = 2$$

For $O2||C_{max}|$

$$C^*_{\max} = \bar{C}.$$

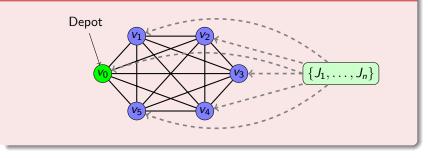
An instance for m = 3 $J_1 = (1, 1, 1), J_2 = (2, 0, 0),$ $J_3 = (0, 2, 0), J_4 = (0, 0, 2).$ M_1 M_2 M_3 M_3 M_1 M_2 M_2 M_3 M_1 M_2 M_3 M_1 M_2 M_3 M_1 M_2 M_3 M_1 M_2 M_2 M_3 M_1 M_2 M_2 M_3 M_1 M_2 M_3 M_1 M_2 M_2 M_3 M_1 M_2 M_3 M_2 M_3 M_1 M_2 M_2 M_3 M_2 M_3 M_2 M_3 M_1 M_2 M_2 M_3 M_2 M_3 M_2 M_3 M_2 M_3 M_2 M_3 $M_$

- The bound $C^*_{\max}\leqslant rac{4}{3}ar{C}$ is tight for $O3||C_{\max}$ [Sevastyanov, Ch 1998]
- The investigation for the tight bound of that type is called optima localization:

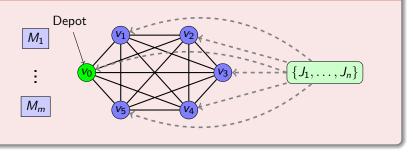
$$C^*_{\max} \in [\bar{C}, \rho^* \bar{C}],$$

$$\rho^* = \sup \frac{C^*_{\max}(I)}{\bar{C}(I)}.$$
r. Ilya Chernykh Tightness of lower bound in $RO2||R_{\max}$ 0/10

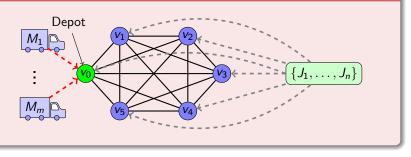
The combination of OPEN SHOP and Metric TSP



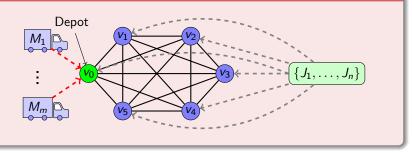
The combination of OPEN SHOP and Metric TSP



The combination of OPEN SHOP and Metric TSP



The combination of OPEN SHOP and Metric TSP



- $G = \langle V, E \rangle$ transportation network;
- dist(u, v) travel time between u and v;
- $\mathcal{J}(v)$ subset of jobs from location v;

•
$$R_i(S) = \max_{v} \max_{J_j \in \mathcal{J}(v)} (C_{ji}(S) + \operatorname{dist}(v_0, v));$$

• $R_{\max}(S) = \max R_i(S) \rightarrow \min_S$ — the makespan.

- Includes TSP as a special case and therefore strongly NP-hard even for m = 1.
- NP-hard for m = 2 and $G = K_2$ [I. Averbakh, O. Berman, Ch 2006]
- FPTAS for m = 2 and $G = K_2$ [A. Kononov 2012]
- NP-hard for *m* = 2 and *G* = *K*₂ and proportionate job processing time [A. Pyatkin, Ch 2022]

Standard lower bound for the routing open shop

• $\ell_{\max} = \max \ell_i - \max$ maximal machine load,

- $d_{\max}(v) = \max_{J_j \in \mathcal{J}(v)} d_j$ maximal length of job from v,
- T^* length of the shortest Hamiltonian route over G (TSP optimum)

Standard lower bound for the routing open shop

• $\ell_{\max} = \max \ell_i - \max$ maximal machine load,

- $d_{\max}(v) = \max_{J_j \in \mathcal{J}(v)} d_j$ maximal length of job from v,
- T^* length of the shortest Hamiltonian route over G (TSP optimum)

Standard lower bound

$$\bar{R} = \max\left\{\ell_{\max} + T^*, \max_{v} \left(d_{\max}(v) + 2\operatorname{dist}(v_0, v)\right)\right\}$$

Standard lower bound for the routing open shop

• $\ell_{\max} = \max \ell_i - \max$ maximal machine load,

- $d_{\max}(v) = \max_{J_j \in \mathcal{J}(v)} d_j$ maximal length of job from v,
- T^* length of the shortest Hamiltonian route over G (TSP optimum)

Standard lower bound

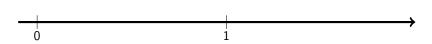
$$\bar{R} = \max\left\{\ell_{\max} + T^*, \max_{v} \left(d_{\max}(v) + 2\operatorname{dist}(v_0, v)\right)\right\}$$

Optima localization

For $RO2||R_{max}|$,

$$R^*_{\max} \in [\bar{R}, \rho^*\bar{R}].$$

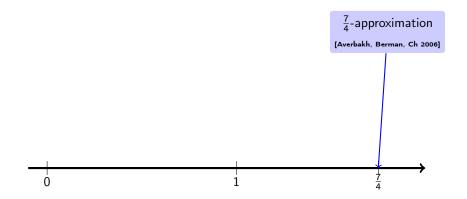
The problem: find this ρ^* .



10/16

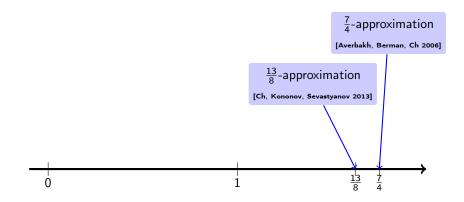
æ

< ∃ >



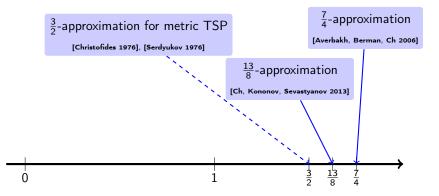
3

-∢ ≣ ▶



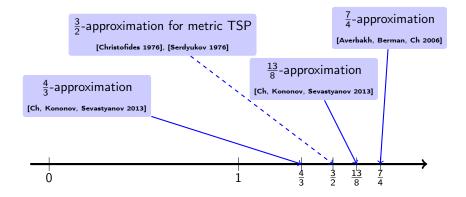
3

-∢ ≣ ▶

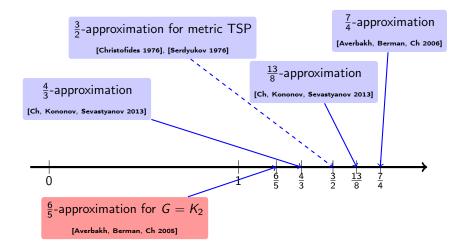


э

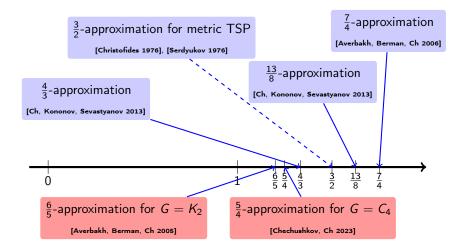
< ∃ →

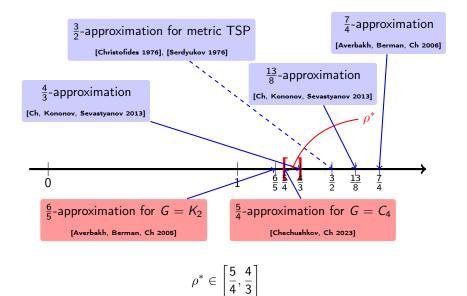


< ∃ →

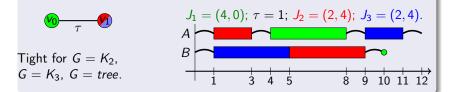


∃ >

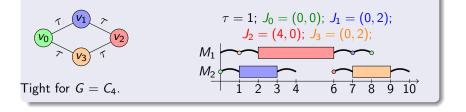




Critical instances

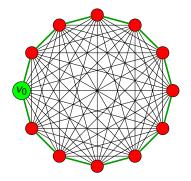


[A. Chechushkov, Ch 2023]



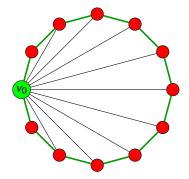
э

・ 同 ト・ く ヨ ト・ く ヨ ト



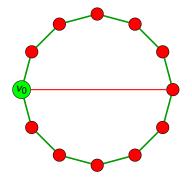
12/16

3 x 3

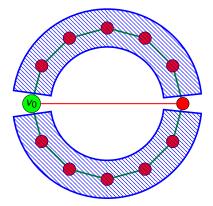


문 > 문

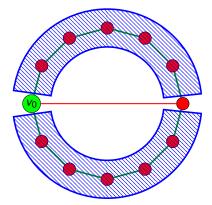
12/16

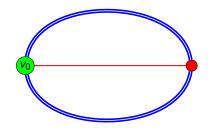


æ



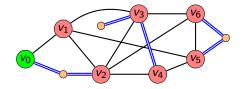
문 문





문 > 문

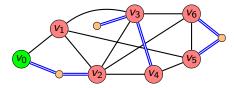
A routing open shop problem with tunnels



3 N

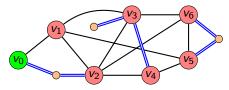
13/16

A routing open shop problem with tunnels

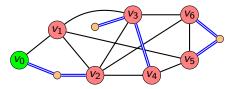


• v_0 is the depot.

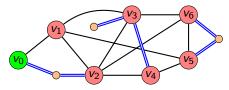
A routing open shop problem with tunnels



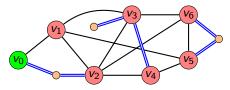
- v_0 is the depot.
- Some nodes (red ones plus depot) contain jobs (perhaps multiple jobs per node). Orange nodes do not contain jobs.



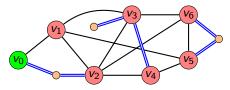
- v_0 is the depot.
- Some nodes (red ones plus depot) contain jobs (perhaps multiple jobs per node). Orange nodes do not contain jobs.
- Some edges (black) are used for traversing (as usual, it takes a time to travel over an edge).



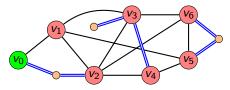
- v_0 is the depot.
- Some nodes (red ones plus depot) contain jobs (perhaps multiple jobs per node). Orange nodes do not contain jobs.
- Some edges (black) are used for traversing (as usual, it takes a time to travel over an edge).
- Other edges (double blue) are tunnels:



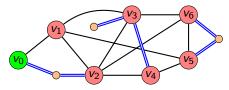
- v_0 is the depot.
- Some nodes (red ones plus depot) contain jobs (perhaps multiple jobs per node). Orange nodes do not contain jobs.
- Some edges (black) are used for traversing (as usual, it takes a time to travel over an edge).
- Other edges (double blue) are tunnels:
 - Can be used for traveling as black ones (travelling times are also involved).



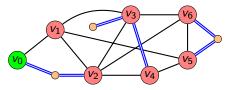
- v_0 is the depot.
- Some nodes (red ones plus depot) contain jobs (perhaps multiple jobs per node). Orange nodes do not contain jobs.
- Some edges (black) are used for traversing (as usual, it takes a time to travel over an edge).
- Other edges (double blue) are tunnels:
 - Can be used for traveling as black ones (travelling times are also involved).
 - Contain single job each (processing times!).



- v_0 is the depot.
- Some nodes (red ones plus depot) contain jobs (perhaps multiple jobs per node). Orange nodes do not contain jobs.
- Some edges (black) are used for traversing (as usual, it takes a time to travel over an edge).
- Other edges (double blue) are tunnels:
 - Can be used for traveling as black ones (travelling times are also involved).
 - Contain single job each (processing times!).
 - Any number of machines can travel over a tunnel at once, but only one can process an operation at a time.



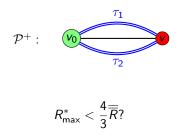
- v₀ is the depot.
- Some nodes (red ones plus depot) contain jobs (perhaps multiple jobs per node). Orange nodes do not contain jobs.
- Some edges (black) are used for traversing (as usual, it takes a time to travel over an edge).
- Other edges (double blue) are tunnels:
 - Can be used for traveling as black ones (travelling times are also involved).
 - Contain single job each (processing times!).
 - Any number of machines can travel over a tunnel at once, but only one can process an operation at a time.
 - Machine processes the tunnel while traveling over it. Travel and processing times are combined.



- v_0 is the depot.
- Some nodes (red ones plus depot) contain jobs (perhaps multiple jobs per node). Orange nodes do not contain jobs.
- Some edges (black) are used for traversing (as usual, it takes a time to travel over an edge).
- Other edges (double blue) are tunnels:
 - Can be used for traveling as black ones (travelling times are also involved).
 - Contain single job each (processing times!).
 - Any number of machines can travel over a tunnel at once, but only one can process an operation at a time.
 - Machine processes the tunnel while traveling over it. Travel and processing times are combined.
- The goal is to process all jobs and to return to the depot ASAP.

Theorem [Ch 2021]

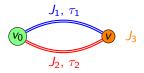
Any instance I of $RO2||R_{max}$ can be reduced to an instance I' of the problem with tunnels $\overline{\overline{R}}O2|G = \mathcal{P}^+|R_{max}$ preserving the standard lower bound. The instance I' contains two nodes, two parallel tunnels, one job at the depot and at most three jobs at node v.



Optima localization for $\overline{\overline{R}}O2|\mathcal{G}=\mathcal{P}^+|\mathcal{R}_{\mathsf{max}}$

Theorem

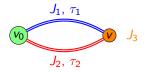
For any instance of $\overline{R}O2|G = \mathcal{P}^+|R_{\max}$ the optimal makespan doesn't exceed $\frac{4}{3}\overline{\overline{R}}$, and the bound is tight.



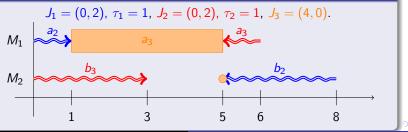
Optima localization for $\overline{\overline{R}}O2|\mathcal{G}=\mathcal{P}^+|\mathcal{R}_{\mathsf{max}}$

Theorem

For any instance of $\overline{R}O2|G = \mathcal{P}^+|R_{\max}$ the optimal makespan doesn't exceed $\frac{4}{3}\overline{\overline{R}}$, and the bound is tight.



The critical instance



15/16

Growing the lower bound

- Search for the new critical instances
- K_2 , K_3 , tree, C_4 have been considered.
- Question: which relatively small structure of the transportation network looks promising? (*K*₄? *cycle* + *chord*?)

Lowering the upper bound

- New approximation algorithm for $RO2||R_{max}$ with given optimal TSP solution
- Probably possible for $RO2|G = cycle|R_{max}$?
- Another (not so strong) way of reducing the instance.

Growing the lower bound

- Search for the new critical instances
- K_2 , K_3 , tree, C_4 have been considered.
- Question: which relatively small structure of the transportation network looks promising? (*K*₄? *cycle* + *chord*?)

Lowering the upper bound

- New approximation algorithm for $RO2||R_{max}$ with given optimal TSP solution
- Probably possible for $RO2|G = cycle|R_{max}$?
- Another (not so strong) way of reducing the instance.

Thank you for the attention!