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Powers of a nonnegative matrix

• Consider a matrix A ∈ Rn×n
≥0 with nonnegative rational coefficients.

• A classical question in combinatorial matrix theory is whether some its power is
positive, that is, has only strictly positive entries.

• How does one determine it? And what does it have to do with graph theory?
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From R≥0 to B

• Since we only care whether an entry is zero or strictly positive, we can replace every
strictly positive entry with 1, and take 1 + 1 = 1.

• This is the definition of the Boolean semiring B = {0, 1}, and the described operation
is a homomorphism (that is, agrees with multiplication). That is, χ(An) = χ(A)n.

• Denote this homomorphism by χ : Rn×n
≥0 → Bn×n.
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The structure of finite semigroups

χ(A) χ(A)2 χ(A)3 χ(A)41 1 0
0 0 1
0 1 0

 1 1 1
0 1 0
0 0 1

 1 1 1
0 0 1
0 1 0

 1 1 1
0 1 0
0 0 1



A lasso

• The length of the cycle in the lasso is called the period of a matrix.
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From matrices over B to digraphs

• We can interpret a matrix A ∈ Bn×n as a digraph G with n vertices:1 1 0
0 0 1
0 1 0

 1 2 3

• Multiplication of such matrices corresponds to concatenating paths in G.

• In particular, Ak is the matrix of paths of length k in G.
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Primitive matrices

• A nonnegative matrix A such that some its power Ak is positive is called primitive.

• This is equivalent to the fact that there is a path of length k from every vertex to
every vertex in G.

Theorem

A digraph is primitive if and only if the gcd of the length

of all its cycles is one and it is strongly connected.
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Deciding primitivity

• Deciding if a digraph is strongly connected is NL-complete.

• Thus, so is deciding primitivity: add a self-loop to every vertex. The new digraph is
primitive if and only if the original one is strongly connected.

• But what if it is promised to be strongly connected?
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Main result

Theorem (Kiefer, R., 2025+)

One can decide in L if a strongly connected digraph is

primitive.
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Directed vs undirected reachability

• Reachability in directed graphs is NL-complete.

• Reachability in undirected graphs can be solved in randomised (deterministic!)
logspace.

1 n
. . .

The probability of going from 1 to 4 decreases exponentially

9 / 17



Directed vs undirected reachability

• Reachability in directed graphs is NL-complete.

• Reachability in undirected graphs can be solved in randomised (deterministic!)
logspace.

1 n
. . .

The probability of going from 1 to 4 decreases exponentially

9 / 17



Directed vs undirected reachability

• Similarly, a random walk forward in a digraph cannot solve computing the period in
randomised logspace.

1

The probability of taking the dashed edge when we start from 1 decreases exponentially
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Directed vs undirected reachability

• But if we are strongly connected, we can still check compatibility with a partition
in p subsets by a random walk!

• It’s just that this random walk has to be symmetric.
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The period of strongly connected digraphs

• The period of a strongly connected digraphs is the gcd of the lengths of all its cycles.

• (it is equal to the period of its adjacency matrix (the length of the lasso))

• If p is the period of a strongly connected digraph, then it looks like that:

12 / 17



The period of strongly connected digraphs

• The period of a strongly connected digraphs is the gcd of the lengths of all its cycles.

• (it is equal to the period of its adjacency matrix (the length of the lasso))

• If p is the period of a strongly connected digraph, then it looks like that:

12 / 17



The period of strongly connected digraphs

• The period of a strongly connected digraphs is the gcd of the lengths of all its cycles.

• (it is equal to the period of its adjacency matrix (the length of the lasso))

• If p is the period of a strongly connected digraph, then it looks like that:

12 / 17



The period of strongly connected digraphs

• If p is the period of a strongly connected digraph, then it looks like that:

• For detecting edges that are incompatible with the partition, we can go in both
directions.

13 / 17



The period of strongly connected digraphs

• If p is the period of a strongly connected digraph, then it looks like that:

• For detecting edges that are incompatible with the partition, we can go in both
directions.

13 / 17



The period of strongly connected digraphs

• To detect incompatibilities with a partition into p sets, it is enough to traverse the
following undirected graph:

v u (v, i) (u, i+ 1)

i ∈ Zp

• Namely, a strongly connected digraph is primitive if and only if for every 2 ≤ p ≤ n,
there is no path between (v, 0) and (v, i) with i ̸= 0.

Theorem (Reingold, 2005)

Reachability in undirected graphs is in L.
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The period of (non-) strongly connected digraphs

• Does not work if G is not strongly connected:
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Hardness

Theorem (Kiefer, R., 2025+)

Deciding if a strongly connected digraph has period one

is L-complete, even for digraphs of period at most two.
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Thank you!
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