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Powers of a nonnegative matrix

Consider a matrix A € RZ5™ with nonnegative rational coefficients.

A classical question in combinatorial matrix theory is whether some its power is
positive, that is, has only strictly positive entries.

How does one determine it? And what does it have to do with graph theory?
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From R>y to B

Since we only care whether an entry is zero or strictly positive, we can replace every
strictly positive entry with 1, and take 1 +1 = 1.
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From R>y to B

Since we only care whether an entry is zero or strictly positive, we can replace every
strictly positive entry with 1, and take 1 +1 = 1.

This is the definition of the Boolean semiring B = {0, 1}, and the described operation

n

is a homomorphism (that is, agrees with multiplication). That is, x(A™) = x(4)".

Denote this homomorphism by y: RL5™ — B"*".
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The structure of finite semigroups
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The structure of finite semigroups

O——O——C——0

A lasso

The length of the cycle in the lasso is called the period of a matrix.
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From matrices over B to digraphs

We can interpret a matrix A € B"*" as a digraph G with n vertices:

110
00 1] < ~(2)__(3)
01 0
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From matrices over B to digraphs

We can interpret a matrix A € B"*" as a digraph G with n vertices:

110
00 1] < ~(2)__(3)
01 0

Multiplication of such matrices corresponds to concatenating paths in G.

In particular, A* is the matrix of paths of length & in G.
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Primitive matrices

A nonnegative matrix A such that some its power A* is positive is called primitive.

6/17



Primitive matrices

A nonnegative matrix A such that some its power A* is positive is called primitive.

This is equivalent to the fact that there is a path of length k from every vertex to
every vertex in G.

6/17



Primitive matrices

A nonnegative matrix A such that some its power A* is positive is called primitive.

This is equivalent to the fact that there is a path of length k from every vertex to
every vertex in G.

Theorem

A digraph is primitive if and only if the gcd of the length
of all its cycles is one and it is strongly connected.
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Deciding primitivity

Deciding if a digraph is strongly connected is NL-complete.
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Deciding primitivity

Deciding if a digraph is strongly connected is NL-complete.

Thus, so is deciding primitivity: add a self-loop to every vertex. The new digraph is
primitive if and only if the original one is strongly connected.

But what if it is promised to be strongly connected?

7/17



Main result

Theorem (Kiefer, R., 2025+)

One can decide in L if a strongly connected digraph is
primitive.
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Directed vs undirected reachability

Reachability in directed graphs is NL-complete.
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Directed vs undirected reachability

Reachability in directed graphs is NL-complete.

Reachability in undirected graphs can be solved in randomised (deterministic!)
logspace.

()

The probability of going from 1 to 4 decreases exponentially
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Directed vs undirected reachability

Similarly, a random walk forward in a digraph cannot solve computing the period in
randomised logspace.

The probability of taking the dashed edge when we start from 1 decreases exponentially
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Directed vs undirected reachability

But if we are strongly connected, we can still check compatibility with a partition
in p subsets by a random walk!
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Directed vs undirected reachability

But if we are strongly connected, we can still check compatibility with a partition
in p subsets by a random walk!

It’s just that this random walk has to be symmetric.
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The period of strongly connected digraphs

The period of a strongly connected digraphs is the ged of the lengths of all its cycles.
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The period of strongly connected digraphs

If p is the period of a strongly connected digraph, then it looks like that:

For detecting edges that are incompatible with the partition, we can go in both
directions.
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The period of strongly connected digraphs

To detect incompatibilities with a partition into p sets, it is enough to traverse the
following undirected graph:

O—@®  (9)

1€ Ly
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Namely, a strongly connected digraph is primitive if and only if for every 2 < p < mn,
there is no path between (v,0) and (v,i) with i # 0.
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The period of strongly connected digraphs

To detect incompatibilities with a partition into p sets, it is enough to traverse the
following undirected graph:

O—@®  (9)

1€ Ly

Namely, a strongly connected digraph is primitive if and only if for every 2 < p < mn,
there is no path between (v,0) and (v,i) with i # 0.

Theorem (Reingold, 2005)

Reachability in undirected graphs is in L.
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The period of (non-) strongly connected digraphs

Does not work if G is not strongly connected:
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Hardness

Theorem (Kiefer, R., 2025+)

Deciding if a strongly connected digraph has period one
is L-complete, even for digraphs of period at most two.
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