
1

Complexity of Enumerating Satisfying
Assignments

Heribert Vollmer

2

Output Sensitivity of Enumeration Complexity

◮ Decision: Output accept/reject: 1 bit
◮ Counting: Output number of solutions: a binary number
◮ Enumeration: Output all solutions: exponentially long

Exponential running time (in size of input) unavoidable!

··· measure efficiency w.r.t. input and output.

3

Enumeration Problems

Let R ⊆ Σ∗ × Σ∗ be polynomially bounded, i.e.,
(x, y) ∈ R =⇒ |y| ∈ |x|O(1).

Enumeration problem corresponding to R:

Enum-R (or E-R)
Instance: x ∈ Σ∗

Output: SolR(x) := {y ∈ Σ∗ | (x, y) ∈ R }.

No requirement on the complexity of the “check” problem,
i. e., to determine, given x, y, if (x, y) ∈ R.

3

Enumeration Problems

Let R ⊆ Σ∗ × Σ∗ be polynomially bounded, i.e.,
(x, y) ∈ R =⇒ |y| ∈ |x|O(1).

Enumeration problem corresponding to R:

Enum-R (or E-R)
Instance: x ∈ Σ∗

Output: SolR(x) := {y ∈ Σ∗ | (x, y) ∈ R }.

No requirement on the complexity of the “check” problem,
i. e., to determine, given x, y, if (x, y) ∈ R.

Enumeration algorithm A for Enum-R:
RAM (polynomially bounded) with an output instruction, that
outputs all y ∈ SolR(x) without duplicates.

4

Measures for Enumeration Complexity
Output Polynomial Time (OutputP):

In
pu

t
x

Enumeration Algorithm

Output:
y1, y2, y3, . . .

(|x|+ |Output|)O(1)

Polynomial Delay (DelayP):

In
pu

t
x

. . .
|x|O(1) |x|O(1) |x|O(1) |x|O(1) |x|O(1)

y1 y2 yn

Incremental Polynomial Delay (IncP):

In
pu

t
x

. . .
|x|O(1) (|x|+ |y1|)

O(1) (|x|+ |y1|+ |y2|)
O(1)

y1 y2 y3

5

Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems

5

Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems

1

1 Maximal independent sets

[Johnson, Papadimitriou, Yannakakis, 1988]: First paper to
study computational complexity of enumeration problems

5

Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems

1 2

1 Maximal independent sets

2 Satisfying assignments of Horn or Krom formulas

Flashlight search! Possible if satisfiability checkable in P

5

Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems

1 2
3

1 Maximal independent sets

2 Satisfying assignments of Horn or Krom formulas

3 Satisfying assignments of propositional formulas

(Assuming P ∕= NP.)

5

Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems

1 2
3

4

1 Maximal independent sets

2 Satisfying assignments of Horn or Krom formulas

3 Satisfying assignments of propositional formulas

4 All y s. t. ψ = ∃x1∀x2 . . . Qkxkφ(x,y) is satisfiable
(E-ΣkSAT).

(Assuming P ∕= NP.)

5

Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems

1 2
3

4

XX

1 Maximal independent sets

2 Satisfying assignments of Horn or Krom formulas

3 Satisfying assignments of propositional formulas

4 All y s. t. ψ = ∃x1∀x2 . . . Qkxkφ(x,y) is satisfiable
(E-ΣkSAT).

(Assuming P ∕= NP.)

6

Satisfiability problems

Enum-Sat
Input: A propositional formula/set of clauses Γ over a

set of variables V

Output: an enumeration of all assignments over V that
satisfy Γ

Enum-ΣkSAT: quantified Σk formula

Enum-Monotone-SAT: positive (resp. negative) clauses

Enum-IHS-SAT: monotone clauses plus implications

Enum-XOR-SAT: clauses with xor disjunctions

Enum-Krom-SAT: clauses of length at most 2

Enum-Horn-SAT: clauses with at most one positive literal

7

Questions

I. Beyond DelayP:

Known: Enum-Sat ∕∈ DelayP unless P = NP.

Is there a “structural” result behind this?
What class corresponds to Enum-Sat?
What about quantified Boolean formulas?

II. Within DelayP:

How does the complexity of problems within DelayP
compare?
Structure within DelayP?

I. Beyond DelayP

Joint work with Nadia Creignou, Markus Kröll,
Reinhard Pichler, Sebastian Skritek

(Discret. App. Math. 2019)

9

Enumeration with Oracles

We know that Enum-SAT ∕∈ OutputP (assuming P ∕= NP).
But using an NP-decision oracle, we can enumerate satisfying
assignments with a polynomial delay (flashlight search)!

10

New Enumeration Classes

Extend RAM model: oracle query built as concatenation of
contents of a (possibly unbounded) sequence of special
registers.

10

New Enumeration Classes

Extend RAM model: oracle query built as concatenation of
contents of a (possibly unbounded) sequence of special
registers.

Let C be a decision complexity class.
◮ Enum-R ∈ IncC, if Enum-R can be enumerated with

incremental delay using a C oracle.

10

New Enumeration Classes

Extend RAM model: oracle query built as concatenation of
contents of a (possibly unbounded) sequence of special
registers.

Let C be a decision complexity class.
◮ Enum-R ∈ IncC, if Enum-R can be enumerated with

incremental delay using a C oracle.
◮ Enum-R ∈ Del+C, if Enum-R can be enumerated with

polynomial delay using a C oracle.

10

New Enumeration Classes

Extend RAM model: oracle query built as concatenation of
contents of a (possibly unbounded) sequence of special
registers.

Let C be a decision complexity class.
◮ Enum-R ∈ IncC, if Enum-R can be enumerated with

incremental delay using a C oracle.
◮ Enum-R ∈ Del+C, if Enum-R can be enumerated with

polynomial delay using a C oracle.
◮ Enum-R ∈ DelC, if Enum-R can be enumerated with

polynomial delay using a C oracle and the size of every
oracle query is polynomially bounded in input length.

10

New Enumeration Classes

Extend RAM model: oracle query built as concatenation of
contents of a (possibly unbounded) sequence of special
registers.

Let C be a decision complexity class.
◮ Enum-R ∈ IncC, if Enum-R can be enumerated with

incremental delay using a C oracle.
◮ Enum-R ∈ Del+C, if Enum-R can be enumerated with

polynomial delay using a C oracle.
◮ Enum-R ∈ DelC, if Enum-R can be enumerated with

polynomial delay using a C oracle and the size of every
oracle query is polynomially bounded in input length.

Oracle calls can be extended!

11

The Power of Growing Queries
Theorem

◮ For all C, Inc+C = IncC.

11

The Power of Growing Queries
Theorem

◮ For all C, Inc+C = IncC.

◮ Theorem: Del+P = IncP.

11

The Power of Growing Queries
Theorem

◮ For all C, Inc+C = IncC.

◮ Theorem: Del+P = IncP.

"⊇": Let Enum-R ∈ IncP via A and fix some x ∈ {0, 1}∗.
Let < be the order on SolR(x) induced by A.

11

The Power of Growing Queries
Theorem

◮ For all C, Inc+C = IncC.

◮ Theorem: Del+P = IncP.

"⊇": Let Enum-R ∈ IncP via A and fix some x ∈ {0, 1}∗.
Let < be the order on SolR(x) induced by A.

AnotherSolExt<
R

Instance: y1, . . . , yn, y
′, x ∈ Σ∗

Question: Is y ′ a prefix of yn+1, where yn+1 is the
(n+ 1)-th element in SolR(x) w.r.t. < ?

Since Enum-R ∈ IncP, AnotherSolExt<
R ∈ P.

11

The Power of Growing Queries
Theorem

◮ For all C, Inc+C = IncC.

◮ Theorem: Del+P = IncP.

"⊇": Let Enum-R ∈ IncP via A and fix some x ∈ {0, 1}∗.
Let < be the order on SolR(x) induced by A.

AnotherSolExt<
R

Instance: y1, . . . , yn, y
′, x ∈ Σ∗

Question: Is y ′ a prefix of yn+1, where yn+1 is the
(n+ 1)-th element in SolR(x) w.r.t. < ?

Since Enum-R ∈ IncP, AnotherSolExt<
R ∈ P.

But: Enum-R ∈ DelayPAnotherSolExt<
R .

11

The Power of Growing Queries
Theorem

◮ For all C, Inc+C = IncC.

◮ Theorem: Del+P = IncP.

"⊇": Let Enum-R ∈ IncP via A and fix some x ∈ {0, 1}∗.
Let < be the order on SolR(x) induced by A.

AnotherSolExt<
R

Instance: y1, . . . , yn, y
′, x ∈ Σ∗

Question: Is y ′ a prefix of yn+1, where yn+1 is the
(n+ 1)-th element in SolR(x) w.r.t. < ?

Since Enum-R ∈ IncP, AnotherSolExt<
R ∈ P.

But: Enum-R ∈ DelayPAnotherSolExt<
R .

In general: Del+∆P
k+1 = IncΣP

k for all k ≥ 0.

12

Hierarchy of Enumeration Complexity Classes

Del+ΣP
k+1

Del+ΣP
k Del+∆P

k+1 = IncΣP
k

DelΣP
k+1

DelΣP
k = Del∆P

k+1

◮ Under the assumptions that the polynomial hierarchy does
not collapse to ΣP

k+1 and EXP ⊊ ∆EXP
k+1 , all strict lines

denote strict inclusions and there are no further inclusions.
◮ The dashed line denotes inclusion, not known to be strict.

13

A Conditional Separation

Theorem: Let k ≥ 1, ℓ ≥ 0. Suppose EXP ⊊ ∆EXP
k+1 . Then,

DelΣP
k ⊊ Del+ΣP

k ∕⊆ DelΣP
ℓ .

13

A Conditional Separation

Theorem: Let k ≥ 1, ℓ ≥ 0. Suppose EXP ⊊ ∆EXP
k+1 . Then,

DelΣP
k ⊊ Del+ΣP

k ∕⊆ DelΣP
ℓ .

Proof. Let L ∈ ∆EXP
k+1 \ EXP be decided in time O(2q(n)) using a

ΣP
k -oracle A.

Enum-D0(L, q)

Instance: x ∈ Σ∗

Output: all {0, 1}-words of length q(|x|), and 2 if x ∈ L

13

A Conditional Separation

Theorem: Let k ≥ 1, ℓ ≥ 0. Suppose EXP ⊊ ∆EXP
k+1 . Then,

DelΣP
k ⊊ Del+ΣP

k ∕⊆ DelΣP
ℓ .

Proof. Let L ∈ ∆EXP
k+1 \ EXP be decided in time O(2q(n)) using a

ΣP
k -oracle A.

Enum-D0(L, q)

Instance: x ∈ Σ∗

Output: all {0, 1}-words of length q(|x|), and 2 if x ∈ L

◮ Enum-D0(L, q) ∈ Del+ΣP
k .

Algorithm A enumerates all 2q(|x|) words in {0, 1}q(|x|) in
O(2q(|x|)) and in parallel decides x ∈ L using oracle A.

13

A Conditional Separation

Theorem: Let k ≥ 1, ℓ ≥ 0. Suppose EXP ⊊ ∆EXP
k+1 . Then,

DelΣP
k ⊊ Del+ΣP

k ∕⊆ DelΣP
ℓ .

Proof. Let L ∈ ∆EXP
k+1 \ EXP be decided in time O(2q(n)) using a

ΣP
k -oracle A.

Enum-D0(L, q)

Instance: x ∈ Σ∗

Output: all {0, 1}-words of length q(|x|), and 2 if x ∈ L

◮ Enum-D0(L, q) ∈ Del+ΣP
k .

◮ Enum-D0(L, q) ∕∈ DelΣP
ℓ .

Suppose contrary, then (x, 2) ∈ D0 can be checked in
EXPtime by enumerating all solutions, hence L ∈ EXP,
contradiction.

13

A Conditional Separation

Theorem: Let k ≥ 1, ℓ ≥ 0. Suppose EXP ⊊ ∆EXP
k+1 . Then,

DelΣP
k ⊊ Del+ΣP

k ∕⊆ DelΣP
ℓ .

Proof. Let L ∈ ∆EXP
k+1 \ EXP be decided in time O(2q(n)) using a

ΣP
k -oracle A.

Enum-D0(L, q)

Instance: x ∈ Σ∗

Output: all {0, 1}-words of length q(|x|), and 2 if x ∈ L

◮ Enum-D0(L, q) ∈ Del+ΣP
k .

◮ Enum-D0(L, q) ∕∈ DelΣP
ℓ .

Note: Generalizes Del P ⊊ Inc P.

14

Self-Reducibility

Clearly, if Enum-R ∈ DelΣP
k then Exist-R ∈ ∆P

k .

14

Self-Reducibility

Clearly, if Enum-R ∈ DelΣP
k then Exist-R ∈ ∆P

k .

ExtSol-R
Instance: (x, y) ∈ Σ∗ × Σ∗

Output: Is there y ′ ∈ Σ∗ such that (x, yy ′) ∈ R?

Note: Enum-R ∈ DelayPExtSol-R.

14

Self-Reducibility

Clearly, if Enum-R ∈ DelΣP
k then Exist-R ∈ ∆P

k .

ExtSol-R
Instance: (x, y) ∈ Σ∗ × Σ∗

Output: Is there y ′ ∈ Σ∗ such that (x, yy ′) ∈ R?

Note: Enum-R ∈ DelayPExtSol-R.

Definition: R is self-reducible if ExtSol-R ≤T Exist-R.

Theorem: Let R be self-reducible. Then
Exist-R ∈ ∆P

k if and only if Enum-R ∈ DelΣP
k .

15

Self-Reducibility

AnotherSol-R
Instance: x ∈ Σ∗, Y ⊆ R(x)

Output: y ∈ R(x)\Y or declare that no such y exists.

Definition: R is enumeration self-reducible if
AnotherSol-R ≤T Exist-AnotherSol-R.

[Kimelfeld, Kolaitis, 2014]

Theorem:
◮ AnotherSol-R can be solved in polynomial time with

access to a ∆P
k -oracle if and only if Enum-R ∈ IncΣP

k .
[cf. Capelli, Strozecki, 2018]

◮ Let R be enumeration self-reducible. Then
Exist-AnotherSol-R ∈ ∆P

k iff Enum-R ∈ IncΣP
k .

[cf. Kimelfeld, Kolaitis, 2014]

16

What Next?

◮ We have (likely strict) hierarchies of (hard) enumeration
classes.

◮ We have methods to prove membership in these classes.

16

What Next?

◮ We have (likely strict) hierarchies of (hard) enumeration
classes.

◮ We have methods to prove membership in these classes.

Any complete enumeration problems?

17

Reduction among Enumeration Problems

What do we want from a reduction?

◮ If Enum-R1 ≤ Enum-R2 and if we can enumerate Enum-R2,
then we can enumerate Enum-R1.

◮ Relevant classes are closed under reduction.
◮ Reduction is transitive.
◮ Allows for (natural?) complete problems.

18

Enumeration Oracle Machines

Enumeration algorithm (RAM) with Enum-R oracle,
i.e., enumeration oracle, not only language (yes-no) oracle

◮ oracle query built as concatenation of contents of a
(possibly unbounded) sequence of special registers

◮ oracle call NOO (“next oracle output”): produces next
element from SolR(x) or information that there is none,
where x is oracle query

◮ oracle bounded: size of oracle query at most polynomial in
size of input

19

Turing Style Reductions

Definition (Reductions ≤D, ≤I)
Enum-R1 ≤x Enum-R2 (for x ∈ {D, I}) if there is a RAM A with
oracle Enum-R2 such that, independent of the order in which
the Enum-R2 oracle enumerates its answers,

◮ A enumerates Enum-R1 in DelayP and is oracle-bounded,
for x = D.

◮ A enumerates Enum-R1 in IncP, for x = I.

20

Properties of ≤D and ≤I

◮ ≤D and ≤I are transitive,

◮ classes DelC are closed under ≤D,

◮ classes IncC are closed under ≤I

(for every class C in PH).

21

Completeness Theorem

Let R ⊆ Σ∗ × Σ∗ and k ≥ 1 such that Exist-R is ΣP
k -complete.

Then Enum-R is

◮ DelΣP
k -hard under ≤D reductions,

◮ IncΣP
k -hard under ≤I reductions.

21

Completeness Theorem

Let R ⊆ Σ∗ × Σ∗ and k ≥ 1 such that Exist-R is ΣP
k -complete.

Then Enum-R is

◮ DelΣP
k -hard under ≤D reductions,

◮ IncΣP
k -hard under ≤I reductions.

If additionally R is self-reducible, then Enum-R is
◮ DelΣP

k -complete under ≤D reductions,

◮ IncΣP
k -complete under ≤I reductions.

22

Complete Problems

··· E-ΣkSAT is complete for DelΣP
k under ≤D reductions.

··· E-ΣkSAT is complete for IncΣP
k under ≤I reductions.

In particular: Enum-SAT is complete for Del NP.

22

Complete Problems

··· E-ΣkSAT is complete for DelΣP
k under ≤D reductions.

··· E-ΣkSAT is complete for IncΣP
k under ≤I reductions.

In particular: Enum-SAT is complete for Del NP.

··· E-Πk−1SAT is complete for DelΣP
k under ≤D reductions.

··· E-Πk−1SAT is complete for IncΣP
k under ≤I reductions.

23

Boolean Constraint Satisfaction Problems

◮ Clear: If Γ ∈ {Horn,dualHorn,bijunctive, affine}, then
Enum-SAT(Γ) ∈ DelayP.

◮ Otherwise:
◮ Observe that not necessarily, SAT(Γ) is NP-hard

(namely if Γ is 1-valid or 0-valid)!
◮ But we can show: AnotherSol_SAT(Γ) is NP-complete.

··· Enum-SAT(Γ) is Del NP-complete under ≤D.

24

Further Results

problem member ≤D-hardness ≤I-hardness

E-ΣkSAT DelΣP
k DelΣP

k IncΣP
k

E-ΠkSAT DelΣP
k+1 DelΣP

k+1 IncΣP
k+1

E-Circumscription Del+NP Del NP Inc NP

E-CardMinSAT Del NP Del NP Inc NP

E-ModBasedDiagnosis Del NP Del NP Inc NP

E-Abduction DelΣP
2 DelΣP

2 IncΣP
2

E-Repair DelΣP
2 IncΣP

2

25

Example: Minimal Satisfiability

E-CardMinSAT
Instance: φ a Boolean formula
Output: All cardinality-minimal satisfying assignments of φ.

Theorem: E-CardMinSAT is Del NP-complete under ≤D.

25

Example: Minimal Satisfiability

E-CardMinSAT
Instance: φ a Boolean formula
Output: All cardinality-minimal satisfying assignments of φ.

Theorem: E-CardMinSAT is Del NP-complete under ≤D.

Hardness follows from Completeness Theorem.

25

Example: Minimal Satisfiability

E-CardMinSAT
Instance: φ a Boolean formula
Output: All cardinality-minimal satisfying assignments of φ.

Theorem: E-CardMinSAT is Del NP-complete under ≤D.

Hardness follows from Completeness Theorem.

Membership:
◮ Compute first the minimal cardinality of models in ptime

with NP-oracle.
◮ Enumerate all cardinality-minimal models by the standard

binary search tree with an NP-oracle.

26

Example: Abduction

E-Abduction
Instance: Γ a set of formulæ (knowledge),

H a set of literals (hypotheses),
q a variable, q ∕∈ H (manifestation)

Output: all sets E ⊆ H such that Γ ∧ E is satisfiable and
Γ ∧ E |= q (explantion).

Theorem: E-Abduction is DelΣP
2 -complete under ≤D.

26

Example: Abduction

E-Abduction
Instance: Γ a set of formulæ (knowledge),

H a set of literals (hypotheses),
q a variable, q ∕∈ H (manifestation)

Output: all sets E ⊆ H such that Γ ∧ E is satisfiable and
Γ ∧ E |= q (explantion).

Theorem: E-Abduction is DelΣP
2 -complete under ≤D.

Hardness follows from Completeness Theorem, since the
decision problem is ΣP

2 -complete [Creignou, Zanuttini, 2006].

26

Example: Abduction

E-Abduction
Instance: Γ a set of formulæ (knowledge),

H a set of literals (hypotheses),
q a variable, q ∕∈ H (manifestation)

Output: all sets E ⊆ H such that Γ ∧ E is satisfiable and
Γ ∧ E |= q (explantion).

Theorem: E-Abduction is DelΣP
2 -complete under ≤D.

Hardness follows from Completeness Theorem, since the
decision problem is ΣP

2 -complete [Creignou, Zanuttini, 2006].

Membership: Given (Γ, H, q) and E ⊆ H, E can be extended to
an explanation iff (Γ ∧ E,H, q) ∈ Abduction.
··· E-Abduction is self-reducible
··· E-Abduction ∈ DelΣP

2 .

II. Within DelayP

Joint work with Nadia Creignou and Arnaud Durand

MFCS 2022

28

Circuit Enumeration – Simplistic View

◮ Starting point: a family of circuits (Cn) of a given kind.
◮ x is the input.
◮ Successive outputs serve as auxiliary input.

Circuit

output

29

Circuit Enumeration with Precomputation and
Memory

Circuit

Precomputation

Circuit

output

30

Formal Definitions

Let T be a complexity class and K a class of circuits.

Definition (K-delay with T -precomputation)
For a predicate R, Enum-R ∈ DelT ·K if there exists an
algorithm M working with resource T and a family of K-circuits
C = (Cn)n∈N such that, for all input x there is an enumeration
y1, ..., yk of SolR(x) and:

◮ M compute some value x∗, i.e., M(x) = x∗,
◮ C|·|(x

∗) = y1 ∈ SolR(x),
◮ for all i < k: C|·|(x

∗, yi) = yi+1 ∈ SolR(x),
◮ C|·|(x

∗, yk) = yk.

31

Formal Definitions

Definition (K-delay with T -precomputation and memory)
Enum-R ∈ Del∗T ·K if there exists an algorithm M working with
resource T and two families of K-circuits C = (Cn)n∈N,
D = (Dn)n∈N such that, for all input x there is an enumeration
y1, ..., yk of SolR(x) and:

◮ M computes some value x∗, i.e., M(x) = x∗,
◮ C|·|(x

∗) = y∗
1 and D|·|(y

∗
1) = y1 ∈ SolR(x),

◮ ∀i < k: C|·|(x
∗, y∗

i) = y∗
i+1 and D|·|(y

∗
i+1) = yi+1 ∈ SolR(x),

◮ C|·|(x
∗, y∗

k) = y∗
k.

DelcT ·K (resp. DelpT ·K): constant (resp. polynomial) size
memory.

32

Classes under Study

Main circuit engines: AC0 circuits/languages,
i.e., uniform families of Boolean circuits of polynomial size and
constant depth with gates of unbounded fan-in.

◮ Del·AC0: no precomputation, no memory
◮ Delc ·AC0: no precomputation, constant size memory
◮ Delp ·AC0: no precomputation, polynomial size memory
◮ Del∗ ·AC0: no precomputation, unbounded memory

◮ DelP ·AC0: polytime precomputation, no memory
◮ DelcP ·AC0: polytime precomputation, constant size memory
◮ DelpP ·AC0: polytime precomputation, polysize memory
◮ Del∗P ·AC0: polytime precomputation, unbounded memory

33

A Hierarchy of Circuit Classes

Del·AC0

Delc ·AC0

Delp ·AC0

Del∗ ·AC0

DelP ·AC0

DelcP ·AC0

DelpP ·AC0

Del∗P ·AC0

DelayP

IncP

if P ∕= NP

if NP ∕= PSPACE

if P ∕= NP

34

Comparisons with Constant Delay

◮ CD◦lin: problems that can be enumerated on RAMs with
constant delay after linear time preprocessing

◮ Classes Del·AC0 and CD◦lin are incomparable
◮ Output the parity of the number of 1 is in CD◦lin (and not

in Del·AC0)
◮ Enumerate the 1 entries of A× B with A, B Boolean

matrices is in Del·AC0

(but, assuming the BMM hypothesis, not in CD◦lin)

◮ CD◦lin ⊊ Delplin ·AC0.

35

The Unreasonable Effectiveness of Unbounded Memory
Theorem: Let R be a polynomially balanced relation such that
Enum-R ∈ IncP and R is AC0-checkable.
Then Enum-R ∈ Del∗P ·AC0.

35

The Unreasonable Effectiveness of Unbounded Memory
Theorem: Let R be a polynomially balanced relation such that
Enum-R ∈ IncP and R is AC0-checkable.
Then Enum-R ∈ Del∗P ·AC0.

Proof idea for Enum-Krom-SAT ∈ Del∗P ·AC0:

◮ Use preprocessing to compute a polynomial number of
solutions.

◮ While outputting these, use unbounded memory to build
tree of all assignments.

◮ Mark satisfying assignments.
◮ Output these one after the other.

35

The Unreasonable Effectiveness of Unbounded Memory
Theorem: Let R be a polynomially balanced relation such that
Enum-R ∈ IncP and R is AC0-checkable.
Then Enum-R ∈ Del∗P ·AC0.

Proof idea for Enum-Krom-SAT ∈ Del∗P ·AC0:

◮ Use preprocessing to compute a polynomial number of
solutions.

◮ While outputting these, use unbounded memory to build
tree of all assignments.

◮ Mark satisfying assignments.
◮ Output these one after the other.

With a similar proof: If P ∕= NP, then
◮ DelpP ·AC0 ⊊ Del∗P ·AC0.
◮ Delp ·AC0 ⊊ Del∗ ·AC0.

36

Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

Note: same as transversals for hypergraph.

36

Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

◮ Enum-IHS-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

36

Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

◮ Enum-IHS-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-Krom-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

Lower bound by reduction from st-connectivity.
Upper bound: Precomputate reachability and topological
order in implication graph; then use refinement of
algorithm by [Aspvall, Plass, Tarjan, 1979]. No memory is
ever needed.

36

Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

◮ Enum-IHS-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-Krom-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-XOR-SAT ∈ DelcP ·AC0 \ Del∗ ·AC0.

Upper bound: Gaussian elimination + Gray code
enumeration.
Lower bound: Parity can be expressed.

36

Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

◮ Enum-IHS-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-Krom-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-XOR-SAT ∈ DelcP ·AC0 \ Del∗ ·AC0.

◮ Enum-Horn-SAT ∈ Del∗P ·AC0 \ Del∗ ·AC0.

Build tree of all possible assignment in memory.

36

Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

◮ Enum-IHS-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-Krom-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-XOR-SAT ∈ DelcP ·AC0 \ Del∗ ·AC0.

◮ Enum-Horn-SAT ∈ Del∗P ·AC0 \ Del∗ ·AC0.

37

Complexity of Enumerating SAT

Del·AC0 Enum-Monotone-SAT

Delc ·AC0

Delp ·AC0

Del∗ ·AC0

DelP ·AC0 Enum-Krom-SAT
Enum-IHS-SAT

DelcP ·AC0 Enum-XOR-SAT

DelpP ·AC0

Del∗P ·AC0 Enum-Horn-SAT

DelayP

IncP

if P ∕= NP

if NP ∕= PSPACE

if P ∕= NP

38

Main Open Question

◮ It is known that Enum-Horn-SAT ∈ DelayP ∩ Del∗P ·AC0,
and it seems to be harder than Enum-Krom-SAT.
Open: Where is Enum-Horn-SAT in this hierarchy of
circuit classes?

◮ Completeness results? Reductions?
Many classes here are promise classes and not known to
possess complete problems.

38

Main Open Question

◮ It is known that Enum-Horn-SAT ∈ DelayP ∩ Del∗P ·AC0,
and it seems to be harder than Enum-Krom-SAT.
Open: Where is Enum-Horn-SAT in this hierarchy of
circuit classes?

◮ Completeness results? Reductions?
Many classes here are promise classes and not known to
possess complete problems.

Thank you!

39

Contents

Begin

Enumeration Problems

Enumeration Classes

Satisfiability Problems

Beyond DelayP
Enumeration with Oracles
Self-Reducibility
Reductions
Completeness Results

Within DelayP
Enumeration with Circuits
Satisfiability problems

End

