Complexity of Enumerating Satisfying Assignments

Heribert Vollmer

Output Sensitivity of Enumeration Complexity

- Decision: Output accept/reject: 1 bit
- Counting: Output number of solutions: a binary number
- Enumeration: Output all solutions: exponentially long

Exponential running time (in size of input) unavoidable!

... measure efficiency w.r.t. input and output.

Enumeration Problems

Let $R \subseteq \Sigma^* \times \Sigma^*$ be polynomially bounded, i.e., $(x,y) \in R \implies |y| \in |x|^{O(1)}.$

Enumeration problem corresponding to R:

 $\begin{array}{ll} & \text{Enum-R (or E-R)} \\ & \text{Instance:} \quad x \in \Sigma^* \\ & \text{Output:} \quad \text{Sol}_R(x) := \{ y \in \Sigma^* \mid (x,y) \in R \}. \end{array}$

No requirement on the complexity of the "check" problem, i. e., to determine, given x, y, if $(x, y) \in R$.

Enumeration Problems

Let $\mathbb{R} \subseteq \Sigma^* \times \Sigma^*$ be polynomially bounded, i.e., $(x,y) \in \mathbb{R} \implies |y| \in |x|^{O(1)}.$

Enumeration problem corresponding to R:

 $\begin{array}{ll} & \text{Enum-R (or E-R)} \\ & \text{Instance:} \quad x \in \Sigma^* \\ & \text{Output:} \quad \text{Sol}_R(x) := \{ y \in \Sigma^* \mid (x,y) \in R \}. \end{array}$

No requirement on the complexity of the "check" problem, i. e., to determine, given x, y, if $(x, y) \in R$.

Enumeration algorithm \mathcal{A} for ENUM-R: RAM (polynomially bounded) with an output instruction, that outputs all $y \in Sol_R(x)$ without duplicates.

Measures for Enumeration Complexity

Output Polynomial Time (OutputP):

Polynomial Delay (DelayP):

Incremental Polynomial Delay (IncP):

1 Maximal independent sets

[Johnson, Papadimitriou, Yannakakis, 1988]: First paper to study computational complexity of enumeration problems

- 1 Maximal independent sets
- 2 Satisfying assignments of Horn or Krom formulas

Flashlight search! Possible if satisfiability checkable in P

- 1 Maximal independent sets
- ② Satisfying assignments of Horn or Krom formulas
- 3 Satisfying assignments of propositional formulas

(Assuming $P \neq NP$.)

- 1 Maximal independent sets
- ② Satisfying assignments of Horn or Krom formulas
- 3 Satisfying assignments of propositional formulas
- (4) All \vec{y} s.t. $\psi = \exists x_1 \forall x_2 \dots Q_k x_k \varphi(\vec{x}, \vec{y})$ is satisfiable (E- Σ_k SAT).

(Assuming $P \neq NP$.)

- 1 Maximal independent sets
- ② Satisfying assignments of Horn or Krom formulas
- 3 Satisfying assignments of propositional formulas
- (4) All \vec{y} s.t. $\psi = \exists x_1 \forall x_2 \dots Q_k x_k \varphi(\vec{x}, \vec{y})$ is satisfiable (E- Σ_k SAT).

(Assuming $P \neq NP$.)

Satisfiability problems

Enum-Sat

- Input: A propositional formula/set of clauses Γ over a set of variables V
- Output: an enumeration of all assignments over V that satisfy $\boldsymbol{\Gamma}$
- **ENUM-** Σ_k **SAT**: quantified Σ_k formula
- ENUM-MONOTONE-SAT: positive (resp. negative) clauses
- **ENUM-IHS-SAT**: monotone clauses plus implications
- ENUM-XOR-SAT: clauses with xor disjunctions
- ENUM-KROM-SAT: clauses of length at most 2
- ENUM-HORN-SAT: clauses with at most one positive literal

Questions

I. Beyond DelayP:

Known: Enum-Sat \notin DelayP unless P = NP.

Is there a "structural" result behind this? What class corresponds to ENUM-SAT? What about quantified Boolean formulas?

II. Within DelayP:

How does the complexity of problems within DelayP compare? Structure within DelayP?

I. Beyond DelayP

Joint work with Nadia Creignou, Markus Kröll, Reinhard Pichler, Sebastian Skritek

(Discret. App. Math. 2019)

Enumeration with Oracles

We know that ENUM-SAT \notin OutputP (assuming P \neq NP). But using an NP-decision oracle, we can enumerate satisfying assignments with a polynomial delay (flashlight search)!

Extend RAM model: oracle query built as concatenation of contents of a (possibly unbounded) sequence of special registers.

Extend RAM model: oracle query built as concatenation of contents of a (possibly unbounded) sequence of special registers.

Let \mathcal{C} be a decision complexity class.

▶ ENUM-R \in lnc C, if ENUM-R can be enumerated with incremental delay using a C oracle.

Extend RAM model: oracle query built as concatenation of contents of a (possibly unbounded) sequence of special registers.

Let \mathcal{C} be a decision complexity class.

- ▶ ENUM-R \in lnc C, if ENUM-R can be enumerated with incremental delay using a C oracle.
- ▶ ENUM-R \in Del⁺C, if ENUM-R can be enumerated with polynomial delay using a C oracle.

Extend RAM model: oracle query built as concatenation of contents of a (possibly unbounded) sequence of special registers.

Let $\ensuremath{\mathbb{C}}$ be a decision complexity class.

- ▶ ENUM-R \in lnc C, if ENUM-R can be enumerated with incremental delay using a C oracle.
- ▶ ENUM-R \in Del⁺C, if ENUM-R can be enumerated with polynomial delay using a C oracle.
- ► ENUM-R ∈ Del C, if ENUM-R can be enumerated with polynomial delay using a C oracle and the size of every oracle query is polynomially bounded in input length.

Extend RAM model: oracle query built as concatenation of contents of a (possibly unbounded) sequence of special registers.

Let \mathcal{C} be a decision complexity class.

- ▶ ENUM-R \in lnc C, if ENUM-R can be enumerated with incremental delay using a C oracle.
- ▶ ENUM-R \in Del⁺C, if ENUM-R can be enumerated with polynomial delay using a C oracle.
- ▶ ENUM-R ∈ Del C, if ENUM-R can be enumerated with polynomial delay using a C oracle and the size of every oracle query is polynomially bounded in input length.

Oracle calls can be extended!

Theorem

For all \mathcal{C} , $\operatorname{Inc}^+\mathcal{C} = \operatorname{Inc} \mathcal{C}$.

Theorem

- For all \mathcal{C} , $\operatorname{Inc}^+\mathcal{C} = \operatorname{Inc} \mathcal{C}$.
- ▶ Theorem: $Del^+P = IncP$.

Theorem

- For all \mathcal{C} , $\operatorname{Inc}^+\mathcal{C} = \operatorname{Inc} \mathcal{C}$.
- Theorem: $Del^+P = IncP$.

" \supseteq ": Let ENUM-R \in IncP via A and fix some $x \in \{0, 1\}^*$. Let < be the order on Sol_R(x) induced by A.

Theorem

- For all \mathcal{C} , $\operatorname{Inc}^+\mathcal{C} = \operatorname{Inc} \mathcal{C}$.
- Theorem: $Del^+P = IncP$.

" \supseteq ": Let ENUM-R \in IncP via A and fix some $x \in \{0, 1\}^*$. Let < be the order on Sol_R(x) induced by A.

Since Enum-R \in IncP, AnotherSolExt[<]_R \in P.

Theorem

- For all \mathcal{C} , $\operatorname{Inc}^+\mathcal{C} = \operatorname{Inc} \mathcal{C}$.
- Theorem: $Del^+P = IncP$.

" \supseteq ": Let ENUM-R \in IncP via A and fix some $x \in \{0, 1\}^*$. Let < be the order on Sol_R(x) induced by A.

Since Enum-R \in IncP, AnotherSolExt[<]_R \in P.

But: ENUM-R $\in \mathsf{DelayP}^{\mathsf{AnotherSolExt}_R^<}$.

Theorem

- For all \mathcal{C} , $\operatorname{Inc}^+\mathcal{C} = \operatorname{Inc} \mathcal{C}$.
- Theorem: $Del^+P = IncP$.

" \supseteq ": Let ENUM-R \in IncP via A and fix some $x \in \{0, 1\}^*$. Let < be the order on Sol_R(x) induced by A.

Since Enum-R \in IncP, AnotherSolExt[<]_R \in P.

But: ENUM-R $\in \mathsf{DelayP}^{\mathsf{ANOTHERSOLEXT}_R^<}$.

In general: $\mathsf{Del}^+\Delta^{\mathbf{P}}_{k+1} = \mathsf{Inc}\,\Sigma^{\mathbf{P}}_k$ for all $k \ge 0$.

Hierarchy of Enumeration Complexity Classes

- Under the assumptions that the polynomial hierarchy does not collapse to Σ^P_{k+1} and EXP ⊊ Δ^{EXP}_{k+1}, all strict lines denote strict inclusions and there are no further inclusions.
- ▶ The dashed line denotes inclusion, not known to be strict.

 $\begin{array}{ll} \mbox{Theorem: Let } k\geq 1, \ell\geq 0. \mbox{ Suppose EXP} \subsetneq \Delta_{k+1}^{EXP}. \mbox{ Then,} \\ \mbox{Del } \Sigma_k^P \subsetneq \mbox{Del}^+\Sigma_k^P \not\subseteq \mbox{Del } \Sigma_\ell^P. \end{array}$

 $\begin{array}{ll} \mbox{Theorem: Let } k\geq 1, \ell\geq 0. \mbox{ Suppose EXP} \subsetneq \Delta_{k+1}^{EXP}. \mbox{ Then,} \\ \mbox{ Del } \Sigma_k^P \subsetneq \mbox{ Del}^+\Sigma_k^P \not\subseteq \mbox{ Del } \Sigma_\ell^P. \end{array}$

Proof. Let $L \in \Delta_{k+1}^{\mathsf{EXP}} \setminus \mathsf{EXP}$ be decided in time $\mathcal{O}(2^{q(n)})$ using a Σ_k^P -oracle A.

 $\label{eq:loss} \begin{array}{ll} {\bf Enum-D_0}(L,q)\\ {\rm Instance:} & x\in \Sigma^*\\ {\rm Output:} & {\rm all}\;\{0,1\}\text{-words of length }q(|x|)\text{, and }2 \; {\rm if}\; x\in L \end{array}$

 $\begin{array}{ll} \mbox{Theorem: Let } k\geq 1, \ell\geq 0. \mbox{ Suppose EXP} \subsetneq \Delta_{k+1}^{EXP}. \mbox{ Then,} \\ \mbox{ Del } \Sigma_k^P \subsetneq \mbox{ Del}^+\Sigma_k^P \not\subseteq \mbox{ Del } \Sigma_\ell^P. \end{array}$

Proof. Let $L\in \Delta_{k+1}^{\mathsf{EXP}}\setminus\mathsf{EXP}$ be decided in time $\mathbb{O}(2^{q(n)})$ using a $\Sigma_k^P\text{-oracle }A.$

 $\label{eq:loss} \begin{array}{ll} {\rm Enum-D}_0(L,q)\\ {\rm Instance:} & x\in \Sigma^*\\ {\rm Output:} & {\rm all}\;\{0,1\}\text{-words of length }q(|x|)\text{, and 2 if }x\in L \end{array}$

• Enum- $D_0(L,q) \in \mathsf{Del}^+\Sigma^{\mathrm{P}}_k$.

Algorithm \mathcal{A} enumerates all $2^{q(|x|)}$ words in $\{0, 1\}^{q(|x|)}$ in $\mathcal{O}(2^{q(|x|)})$ and in parallel decides $x \in L$ using oracle A.

 $\begin{array}{ll} \mbox{Theorem: Let } k\geq 1, \ell\geq 0. \mbox{ Suppose EXP} \subsetneq \Delta_{k+1}^{EXP}. \mbox{ Then,} \\ \mbox{ Del } \Sigma_k^P \subsetneq \mbox{ Del}^+\Sigma_k^P \not\subseteq \mbox{ Del } \Sigma_\ell^P. \end{array}$

Proof. Let $L \in \Delta_{k+1}^{\mathsf{EXP}} \setminus \mathsf{EXP}$ be decided in time $\mathcal{O}(2^{q(n)})$ using a Σ_k^P -oracle A.

 $\label{eq:linear} \begin{array}{ll} {\rm Enum-D}_0(L,q) \\ {\rm Instance:} & x\in \Sigma^* \\ {\rm Output:} & {\rm all} \ \{0,1\} \text{-words of length } q(|x|), \ {\rm and} \ 2 \ {\rm if} \ x\in L \end{array}$

- Enum- $D_0(L,q) \in \mathsf{Del}^+\Sigma^{\mathrm{P}}_k$.
- ENUM-D₀(L, q) ∉ Del Σ_ℓ^P. Suppose contrary, then (x, 2) ∈ D₀ can be checked in EXPtime by enumerating all solutions, hence L ∈ EXP, contradiction.

 $\begin{array}{ll} \mbox{Theorem: Let } k\geq 1, \ell\geq 0. \mbox{ Suppose EXP} \subsetneq \Delta_{k+1}^{EXP}. \mbox{ Then,} \\ \mbox{ Del } \Sigma_k^P \subsetneq \mbox{ Del}^+\Sigma_k^P \not\subseteq \mbox{ Del } \Sigma_\ell^P. \end{array}$

Proof. Let $L \in \Delta_{k+1}^{\mathsf{EXP}} \setminus \mathsf{EXP}$ be decided in time $\mathcal{O}(2^{q(n)})$ using a Σ_k^P -oracle A.

 $\label{eq:linear} \begin{array}{ll} {\rm Enum-D}_0(L,q)\\ {\rm Instance:} & x\in \Sigma^*\\ {\rm Output:} & {\rm all}\;\{0,1\}\text{-words of length }q(|x|)\text{, and 2 if }x\in L \end{array}$

- ► ENUM- $D_0(L,q) \in \mathsf{Del}^+\Sigma^{\mathsf{P}}_k$.
- Enum- $D_0(L,q) \notin \text{Del } \Sigma_{\ell}^{\mathrm{P}}$.

Note: Generalizes $\mathsf{Del}\,\mathsf{P}\subsetneq\mathsf{Inc}\,\mathsf{P}$.

Clearly, if Enum-R \in Del Σ_k^P then Exist-R $\in \Delta_k^P$.

Clearly, if ENUM-R \in Del Σ_k^P then EXIST-R $\in \Delta_k^P$.

ExtSol-R Instance: $(x, y) \in \Sigma^* \times \Sigma^*$ Output: Is there $y' \in \Sigma^*$ such that $(x, yy') \in R$?

Note: ENUM-R \in DelayP^{EXTSOL-R}.

Clearly, if ENUM-R $\in \text{Del }\Sigma_k^P$ then EXIST-R $\in \Delta_k^P$.

ExtSol-R Instance: $(x, y) \in \Sigma^* \times \Sigma^*$ Output: Is there $y' \in \Sigma^*$ such that $(x, yy') \in R$?

Note: ENUM-R \in DelayP^{ExtSol-R}.

Definition: R is self-reducible if EXTSOL-R \leq_{T} EXIST-R.

Theorem: Let R be self-reducible. Then $Exist-R \in \Delta_k^P \text{ if and only if } Enum-R \in \mathsf{Del}\, \Sigma_k^P.$

Definition: R is enumeration self-reducible if AnotherSol-R \leq_T Exist-AnotherSol-R.

[Kimelfeld, Kolaitis, 2014]

Theorem:

► ANOTHERSOL-R can be solved in polynomial time with access to a Δ^P_k-oracle if and only if ENUM-R ∈ Inc Σ^P_k. [cf. Capelli, Strozecki, 2018]

► Let R be enumeration self-reducible. Then EXIST-ANOTHERSOL-R $\in \Delta_k^P$ iff ENUM-R $\in Inc \Sigma_k^P$. [cf. Kimelfeld, Kolaitis, 2014]
What Next?

- We have (likely strict) hierarchies of (hard) enumeration classes.
- ▶ We have methods to prove membership in these classes.

What Next?

- We have (likely strict) hierarchies of (hard) enumeration classes.
- ▶ We have methods to prove membership in these classes.

Any complete enumeration problems?

Reduction among Enumeration Problems

What do we want from a reduction?

- ▶ If ENUM- $R_1 \leq$ ENUM- R_2 and if we can enumerate ENUM- R_2 , then we can enumerate ENUM- R_1 .
- ▶ Relevant classes are closed under reduction.
- Reduction is transitive.
- ▶ Allows for (natural?) complete problems.

Enumeration Oracle Machines

Enumeration algorithm (RAM) with ENUM-R oracle, i.e., enumeration oracle, not only language (yes-no) oracle

- oracle query built as concatenation of contents of a (possibly unbounded) sequence of special registers
- oracle call NOO ("next oracle output"): produces next element from Sol_R(x) or information that there is none, where x is oracle query
- oracle bounded: size of oracle query at most polynomial in size of input

Definition (Reductions \leq_D , \leq_I)

ENUM- $R_1 \leq_x ENUM-R_2$ (for $x \in \{D, I\}$) if there is a RAM A with oracle ENUM- R_2 such that, independent of the order in which the ENUM- R_2 oracle enumerates its answers,

- A enumerates ENUM-R₁ in DelayP and is oracle-bounded, for x = D.
- \mathcal{A} enumerates ENUM-R₁ in IncP, for x = I.

Properties of \leq_D and \leq_I

- $\blacktriangleright \leq_{\mathrm{D}}$ and \leq_{I} are transitive,
- ▶ classes Del C are closed under \leq_D ,
- ▶ classes Inc C are closed under \leq_I

(for every class C in PH).

Completeness Theorem

Let $R \subseteq \Sigma^* \times \Sigma^*$ and $k \ge 1$ such that EXIST-R is Σ_k^P -complete.

Then ENUM-R is

- ► $\text{Del} \Sigma_k^{\text{P}}$ -hard under \leq_D reductions,
- ► $lnc \Sigma_k^P$ -hard under \leq_I reductions.

Completeness Theorem

Let $R \subseteq \Sigma^* \times \Sigma^*$ and $k \ge 1$ such that EXIST-R is Σ_k^P -complete. Then ENUM-R is

- ► Del $\Sigma_k^{\rm P}$ -hard under $\leq_{\rm D}$ reductions,
- ► $lnc \Sigma_k^P$ -hard under \leq_I reductions.

If additionally R is self-reducible, then Enum-R is

- Del $\Sigma_k^{\rm P}$ -complete under $\leq_{\rm D}$ reductions,
- Inc Σ_k^{P} -complete under \leq_{I} reductions.

Complete Problems

- \therefore E- Σ_k SAT is complete for Del Σ_k^P under \leq_D reductions.
- \therefore E- Σ_k SAT is complete for Inc Σ_k^P under \leq_I reductions.

In particular: ENUM-SAT is complete for Del NP.

Complete Problems

- \therefore E- Σ_k SAT is complete for Del Σ_k^P under \leq_D reductions.
- :. E- Σ_k SAT is complete for Inc Σ_k^P under \leq_I reductions.

In particular: ENUM-SAT is complete for Del NP.

- :. E- Π_{k-1} SAT is complete for Del Σ_k^P under \leq_D reductions.
- \therefore E- Π_{k-1} SAT is complete for $Inc \Sigma_k^P$ under \leq_I reductions.

Boolean Constraint Satisfaction Problems

Clear: If Γ ∈ {Horn, dualHorn, bijunctive, affine}, then Enum-SAT(Γ) ∈ DelayP.

Otherwise:

- Observe that not necessarily, SAT(Γ) is NP-hard (namely if Γ is 1-valid or 0-valid)!
- ▶ But we can show: ANOTHERSOL_SAT(Γ) is NP-complete.
- \therefore Enum-SAT(Γ) is Del NP-complete under \leq_D .

Further Results

problem	member	\leq_{D} -hardness	\leq_{I} -hardness
$E-\Sigma_kSAT$	$Del \Sigma^P_k$	$Del \Sigma^{\mathrm{P}}_k$	$Inc \Sigma^{\mathrm{P}}_k$
$E-\Pi_k SAT$	$Del \Sigma^P_{k+1}$	$Del \Sigma^P_{k+1}$	$\text{Inc} \Sigma_{k+1}^{P}$
E-CIRCUMSCRIPTION	Del^+NP	Del NP	Inc NP
E-CardMinSAT	Del NP	Del NP	Inc NP
E-ModBasedDiagnosis	Del NP	Del NP	Inc NP
E-Abduction	$Del \Sigma_2^P$	$Del \Sigma_2^{\mathrm{P}}$	$\text{Inc}\Sigma_2^{\rm P}$
E-Repair	$Del \Sigma_2^P$		$Inc \Sigma_2^{\mathrm{P}}$

Example: Minimal Satisfiability

E-CARDMINSAT

Theorem: E-CARDMINSAT is Del NP-complete under \leq_D .

Example: Minimal Satisfiability

E-CardMinSAT

Instance:	ϕ a Boolean formula
Output:	All cardinality-minimal satisfying assignments of ϕ .

Theorem: E-CardMinSAT is Del NP-complete under \leq_D .

Hardness follows from Completeness Theorem.

Example: Minimal Satisfiability

E-CardMinSAT

Instance:	ϕ a Boolean formula
Output:	All cardinality-minimal satisfying assignments of ϕ .

Theorem: E-CARDMINSAT is Del NP-complete under \leq_D .

Hardness follows from Completeness Theorem.

Membership:

- Compute first the minimal cardinality of models in ptime with NP-oracle.
- Enumerate all cardinality-minimal models by the standard binary search tree with an NP-oracle.

Example: Abduction

E-Abduction	
Instance:	Γ a set of formulæ (knowledge),
	H a set of literals (hypotheses),
	q a variable, $q \notin H$ (manifestation)
Output:	all sets $E\subseteq H$ such that $\Gamma\wedge E$ is satisfiable and
	$\Gamma \wedge E \models q$ (explantion).

Theorem: E-Abduction is $\text{Del} \Sigma_2^P$ -complete under \leq_D .

Example: Abduction

E-Abduction		
Instance:	Γ a set of formulæ (knowledge),	
	H a set of literals (hypotheses),	
	q a variable, $q \notin H$ (manifestation)	
Output:	all sets $E\subseteq H$ such that $\Gamma\wedge E$ is satisfiable and	
	$\Gamma \wedge E \models q$ (explantion).	

Theorem: E-ABDUCTION is $\text{Del} \Sigma_2^{\text{P}}$ -complete under \leq_{D} .

Hardness follows from Completeness Theorem, since the decision problem is $\Sigma_2^{\rm P}$ -complete [Creignou, Zanuttini, 2006].

Example: Abduction

E-Abduction	
Instance:	Γ a set of formulæ (knowledge),
	H a set of literals (hypotheses),
	q a variable, $q \notin H$ (manifestation)
Output:	all sets $E\subseteq H$ such that $\Gamma\wedge E$ is satisfiable and
	$\Gamma \wedge E \models q$ (explantion).

Theorem: E-Abduction is $\text{Del} \Sigma_2^{\text{P}}$ -complete under \leq_{D} .

Hardness follows from Completeness Theorem, since the decision problem is $\Sigma_2^{\rm P}$ -complete [Creignou, Zanuttini, 2006].

Membership: Given (Γ, H, q) and $E \subseteq H$, E can be extended to an explanation iff $(\Gamma \land E, H, q) \in Abduction$.

- ... E-ABDUCTION is self-reducible
- \therefore E-Abduction $\in \mathsf{Del}\,\Sigma_2^P.$

II. Within DelayP

Joint work with Nadia Creignou and Arnaud Durand

MFCS 2022

Circuit Enumeration – Simplistic View

- Starting point: a family of circuits (C_n) of a given kind.
- x is the input.
- Successive outputs serve as auxiliary input.

Circuit Enumeration with Precomputation and Memory

Formal Definitions

Let T be a complexity class and ${\mathcal K}$ a class of circuits.

Definition (\mathcal{K} -delay with T-precomputation)

For a predicate R, ENUM-R $\in Del_T \cdot \mathcal{K}$ if there exists an algorithm M working with resource T and a family of \mathcal{K} -circuits $\mathcal{C} = (C_n)_{n \in \mathbb{N}}$ such that, for all input x there is an enumeration $y_1, ..., y_k$ of $Sol_R(x)$ and:

• M compute some value x^* , i.e., $M(x) = x^*$,

►
$$C_{|\cdot|}(x^*) = y_1 \in \operatorname{Sol}_R(x),$$

• for all
$$i < k$$
: $C_{|\cdot|}(x^*, y_i) = y_{i+1} \in Sol_R(x)$,

$$\triangleright \quad C_{|\cdot|}(x^*, y_k) = y_k$$

Formal Definitions

Definition (\mathcal{K} -delay with T-precomputation and memory) ENUM-R $\in \text{Del}_T^* \cdot \mathcal{K}$ if there exists an algorithm M working with resource T and two families of \mathcal{K} -circuits $\mathcal{C} = (C_n)_{n \in \mathbb{N}}$, $\mathcal{D} = (D_n)_{n \in \mathbb{N}}$ such that, for all input x there is an enumeration $y_1, ..., y_k$ of $\text{Sol}_R(x)$ and:

M computes some value x*, i.e., M(x) = x*,
C_{|·|}(x*) = y₁* and D_{|·|}(y₁*) = y₁ ∈ Sol_R(x),
∀i < k: C_{|·|}(x*, y_i*) = y_{i+1}* and D_{|·|}(y_{i+1}*) = y_{i+1} ∈ Sol_R(x),
C_{|·|}(x*, y_k*) = y_k*.

 $\operatorname{Del}_{\mathsf{T}}^{\mathsf{c}} \cdot \mathcal{K}$ (resp. $\operatorname{Del}_{\mathsf{T}}^{\mathsf{p}} \cdot \mathcal{K}$): constant (resp. polynomial) size memory.

Classes under Study

Main circuit engines: AC^0 circuits/languages, i.e., uniform families of Boolean circuits of polynomial size and constant depth with gates of unbounded fan-in.

- ▶ Del·AC⁰: no precomputation, no memory
- ▶ Del^c · AC⁰: no precomputation, constant size memory
- ▶ Del^p·AC⁰: no precomputation, polynomial size memory
- ▶ Del^{*}·AC⁰: no precomputation, unbounded memory
- ▶ $Del_P \cdot AC^0$: polytime precomputation, no memory
- ▶ Del^c_P·AC⁰: polytime precomputation, constant size memory
- ▶ Del^p_P·AC⁰: polytime precomputation, polysize memory
- ▶ Del^{*}_P·AC⁰: polytime precomputation, unbounded memory

Comparisons with Constant Delay

- CDolin: problems that can be enumerated on RAMs with constant delay after linear time preprocessing
- ▶ Classes Del·AC⁰ and CD∘lin are incomparable
 - Output the parity of the number of 1 is in CDolin (and not in Del·AC⁰)
 - Enumerate the 1 entries of A × B with A, B Boolean matrices is in Del·AC⁰

(but, assuming the BMM hypothesis, not in CDolin)

► $CD \circ lin \subsetneq Del_{lin}^{p} \cdot AC^{0}$.

The Unreasonable Effectiveness of Unbounded Memory

Theorem: Let R be a polynomially balanced relation such that ENUM-R \in IncP and R is AC⁰-checkable. Then ENUM-R \in Del^{*}_P·AC⁰. The Unreasonable Effectiveness of Unbounded Memory

Theorem: Let R be a polynomially balanced relation such that ENUM-R \in IncP and R is AC⁰-checkable. Then ENUM-R \in Del^{*}_p·AC⁰.

Proof idea for ENUM-KROM-SAT \in Del^{*}_P · AC⁰:

- Use preprocessing to compute a polynomial number of solutions.
- While outputting these, use unbounded memory to build tree of all assignments.
- Mark satisfying assignments.
- Output these one after the other.

The Unreasonable Effectiveness of Unbounded Memory

Theorem: Let R be a polynomially balanced relation such that ENUM-R \in IncP and R is AC⁰-checkable. Then ENUM-R \in Del^{*}_p·AC⁰.

Proof idea for ENUM-KROM-SAT $\in Del_P^* \cdot AC^0$:

- Use preprocessing to compute a polynomial number of solutions.
- While outputting these, use unbounded memory to build tree of all assignments.
- Mark satisfying assignments.
- Output these one after the other.

With a similar proof: If $P \neq NP$, then

- $\blacktriangleright \operatorname{Del}_{\mathrm{P}}^{\mathrm{p}} \cdot \mathsf{AC}^{0} \subsetneq \operatorname{Del}_{\mathrm{P}}^{*} \cdot \mathsf{AC}^{0}.$
- ► $Del^{p} \cdot AC^{0} \subsetneq Del^{*} \cdot AC^{0}$.

ENUM-MONOTONE-SAT \in Del·AC⁰.

Note: same as transversals for hypergraph.

- ENUM-MONOTONE-SAT \in Del·AC⁰.
- ▶ ENUM-IHS-SAT $\in Del_P \cdot AC^0 \setminus Del^* \cdot AC^0$.

- ENUM-MONOTONE-SAT \in Del·AC⁰.
- ▶ ENUM-IHS-SAT \in Del_P · AC⁰ \ Del^{*} · AC⁰.
- **ENUM-KROM-SAT** \in Del_P·AC⁰ \ Del^{*}·AC⁰.

Lower bound by reduction from ST-CONNECTIVITY. Upper bound: Precomputate reachability and topological order in implication graph; then use refinement of algorithm by [Aspvall, Plass, Tarjan, 1979]. No memory is ever needed.

- **ENUM-MONOTONE-SAT** \in Del·AC⁰.
- ▶ ENUM-IHS-SAT \in Del_P · AC⁰ \ Del^{*} · AC⁰.
- ENUM-KROM-SAT \in Del_P·AC⁰ \ Del^{*}·AC⁰.
- Enum-XOR-SAT $\in \text{Del}_P^c \cdot AC^0 \setminus \text{Del}^* \cdot AC^0$.

Upper bound: Gaussian elimination + Gray code enumeration.

Lower bound: PARITY can be expressed.

- **ENUM-MONOTONE-SAT** \in Del·AC⁰.
- ▶ ENUM-IHS-SAT \in Del_P·AC⁰ \ Del^{*}·AC⁰.
- ENUM-KROM-SAT \in Del_P·AC⁰ \ Del^{*}·AC⁰.
- ▶ ENUM-XOR-SAT $\in \operatorname{Del}_{\mathsf{P}}^{\mathsf{c}} \cdot \mathsf{AC}^{0} \setminus \operatorname{Del}^{*} \cdot \mathsf{AC}^{0}$.
- Enum-Horn-SAT $\in \text{Del}_{P}^{*} \cdot AC^{0} \setminus \text{Del}^{*} \cdot AC^{0}$.

Build tree of all possible assignment in memory.

- **ENUM-MONOTONE-SAT** \in Del·AC⁰.
- ▶ ENUM-IHS-SAT \in Del_P · AC⁰ \ Del^{*} · AC⁰.
- ENUM-KROM-SAT \in Del_P·AC⁰ \ Del^{*}·AC⁰.
- ▶ ENUM-XOR-SAT $\in \operatorname{Del}_{\mathsf{P}}^{\mathsf{c}} \cdot \mathsf{AC}^{0} \setminus \operatorname{Del}^{*} \cdot \mathsf{AC}^{0}$.
- ► ENUM-HORN-SAT $\in \text{Del}_P^* \cdot AC^0 \setminus \text{Del}^* \cdot AC^0$.

Main Open Question

- It is known that ENUM-HORN-SAT ∈ DelayP ∩ Del^{*}_P · AC⁰, and it seems to be harder than ENUM-KROM-SAT. Open: Where is ENUM-HORN-SAT in this hierarchy of circuit classes?
- Completeness results? Reductions? Many classes here are promise classes and not known to possess complete problems.

Main Open Question

- It is known that ENUM-HORN-SAT ∈ DelayP ∩ Del^{*}_P · AC⁰, and it seems to be harder than ENUM-KROM-SAT. Open: Where is ENUM-HORN-SAT in this hierarchy of circuit classes?
- Completeness results? Reductions? Many classes here are promise classes and not known to possess complete problems.

Thank you!

Contents

Begin

Enumeration Problems

Enumeration Classes

Satisfiability Problems

Beyond DelayP Enumeration with Oracles Self-Reducibility Reductions Completeness Results

Within DelayP

Enumeration with Circuits Satisfiability problems

End