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Output Sensitivity of Enumeration Complexity

◮ Decision: Output accept/reject: 1 bit
◮ Counting: Output number of solutions: a binary number
◮ Enumeration: Output all solutions: exponentially long

Exponential running time (in size of input) unavoidable!

··· measure efficiency w.r.t. input and output.
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Enumeration Problems

Let R ⊆ Σ∗ × Σ∗ be polynomially bounded, i.e.,
(x, y) ∈ R =⇒ |y| ∈ |x|O(1).

Enumeration problem corresponding to R:

Enum-R (or E-R)
Instance: x ∈ Σ∗

Output: SolR(x) := {y ∈ Σ∗ | (x, y) ∈ R }.

No requirement on the complexity of the “check” problem,
i. e., to determine, given x, y, if (x, y) ∈ R.
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Enumeration Problems

Let R ⊆ Σ∗ × Σ∗ be polynomially bounded, i.e.,
(x, y) ∈ R =⇒ |y| ∈ |x|O(1).

Enumeration problem corresponding to R:

Enum-R (or E-R)
Instance: x ∈ Σ∗

Output: SolR(x) := {y ∈ Σ∗ | (x, y) ∈ R }.

No requirement on the complexity of the “check” problem,
i. e., to determine, given x, y, if (x, y) ∈ R.

Enumeration algorithm A for Enum-R:
RAM (polynomially bounded) with an output instruction, that
outputs all y ∈ SolR(x) without duplicates.
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Measures for Enumeration Complexity
Output Polynomial Time (OutputP):
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Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems
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Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems

1

1 Maximal independent sets

[Johnson, Papadimitriou, Yannakakis, 1988]: First paper to
study computational complexity of enumeration problems
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Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems

1 2

1 Maximal independent sets

2 Satisfying assignments of Horn or Krom formulas

Flashlight search! Possible if satisfiability checkable in P
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IncP
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(Assuming P ∕= NP.)
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Tractable and Intractable Problems

DelayP

IncP

OutputP All enumeration
problems

1 2
3
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1 Maximal independent sets

2 Satisfying assignments of Horn or Krom formulas

3 Satisfying assignments of propositional formulas
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(E-ΣkSAT).

(Assuming P ∕= NP.)
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Satisfiability problems

Enum-Sat
Input: A propositional formula/set of clauses Γ over a

set of variables V

Output: an enumeration of all assignments over V that
satisfy Γ

Enum-ΣkSAT: quantified Σk formula

Enum-Monotone-SAT: positive (resp. negative) clauses

Enum-IHS-SAT: monotone clauses plus implications

Enum-XOR-SAT: clauses with xor disjunctions

Enum-Krom-SAT: clauses of length at most 2

Enum-Horn-SAT: clauses with at most one positive literal



7

Questions

I. Beyond DelayP:

Known: Enum-Sat ∕∈ DelayP unless P = NP.

Is there a “structural” result behind this?
What class corresponds to Enum-Sat?
What about quantified Boolean formulas?

II. Within DelayP:

How does the complexity of problems within DelayP
compare?
Structure within DelayP?



I. Beyond DelayP

Joint work with Nadia Creignou, Markus Kröll,
Reinhard Pichler, Sebastian Skritek

(Discret. App. Math. 2019)
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Enumeration with Oracles

We know that Enum-SAT ∕∈ OutputP (assuming P ∕= NP).
But using an NP-decision oracle, we can enumerate satisfying
assignments with a polynomial delay (flashlight search)!
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New Enumeration Classes

Extend RAM model: oracle query built as concatenation of
contents of a (possibly unbounded) sequence of special
registers.
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New Enumeration Classes

Extend RAM model: oracle query built as concatenation of
contents of a (possibly unbounded) sequence of special
registers.

Let C be a decision complexity class.
◮ Enum-R ∈ IncC, if Enum-R can be enumerated with

incremental delay using a C oracle.
◮ Enum-R ∈ Del+C, if Enum-R can be enumerated with

polynomial delay using a C oracle.
◮ Enum-R ∈ DelC, if Enum-R can be enumerated with

polynomial delay using a C oracle and the size of every
oracle query is polynomially bounded in input length.

Oracle calls can be extended!
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◮ For all C, Inc+C = IncC.
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The Power of Growing Queries
Theorem

◮ For all C, Inc+C = IncC.

◮ Theorem: Del+P = IncP.

"⊇": Let Enum-R ∈ IncP via A and fix some x ∈ {0, 1}∗.
Let < be the order on SolR(x) induced by A.

AnotherSolExt<
R

Instance: y1, . . . , yn, y
′, x ∈ Σ∗

Question: Is y ′ a prefix of yn+1, where yn+1 is the
(n+ 1)-th element in SolR(x) w.r.t. < ?

Since Enum-R ∈ IncP, AnotherSolExt<
R ∈ P.

But: Enum-R ∈ DelayPAnotherSolExt<
R .

In general: Del+∆P
k+1 = IncΣP

k for all k ≥ 0.
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Hierarchy of Enumeration Complexity Classes

Del+ΣP
k+1

Del+ΣP
k Del+∆P

k+1 = IncΣP
k

DelΣP
k+1

DelΣP
k = Del∆P

k+1

◮ Under the assumptions that the polynomial hierarchy does
not collapse to ΣP

k+1 and EXP ⊊ ∆EXP
k+1 , all strict lines

denote strict inclusions and there are no further inclusions.
◮ The dashed line denotes inclusion, not known to be strict.



13

A Conditional Separation

Theorem: Let k ≥ 1, ℓ ≥ 0. Suppose EXP ⊊ ∆EXP
k+1 . Then,

DelΣP
k ⊊ Del+ΣP

k ∕⊆ DelΣP
ℓ .
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A Conditional Separation

Theorem: Let k ≥ 1, ℓ ≥ 0. Suppose EXP ⊊ ∆EXP
k+1 . Then,

DelΣP
k ⊊ Del+ΣP

k ∕⊆ DelΣP
ℓ .

Proof. Let L ∈ ∆EXP
k+1 \ EXP be decided in time O(2q(n)) using a

ΣP
k -oracle A.

Enum-D0(L, q)

Instance: x ∈ Σ∗

Output: all {0, 1}-words of length q(|x|), and 2 if x ∈ L

◮ Enum-D0(L, q) ∈ Del+ΣP
k .

Algorithm A enumerates all 2q(|x|) words in {0, 1}q(|x|) in
O(2q(|x|)) and in parallel decides x ∈ L using oracle A.
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A Conditional Separation

Theorem: Let k ≥ 1, ℓ ≥ 0. Suppose EXP ⊊ ∆EXP
k+1 . Then,

DelΣP
k ⊊ Del+ΣP

k ∕⊆ DelΣP
ℓ .

Proof. Let L ∈ ∆EXP
k+1 \ EXP be decided in time O(2q(n)) using a

ΣP
k -oracle A.

Enum-D0(L, q)

Instance: x ∈ Σ∗

Output: all {0, 1}-words of length q(|x|), and 2 if x ∈ L

◮ Enum-D0(L, q) ∈ Del+ΣP
k .

◮ Enum-D0(L, q) ∕∈ DelΣP
ℓ .

Suppose contrary, then (x, 2) ∈ D0 can be checked in
EXPtime by enumerating all solutions, hence L ∈ EXP,
contradiction.
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A Conditional Separation

Theorem: Let k ≥ 1, ℓ ≥ 0. Suppose EXP ⊊ ∆EXP
k+1 . Then,

DelΣP
k ⊊ Del+ΣP

k ∕⊆ DelΣP
ℓ .

Proof. Let L ∈ ∆EXP
k+1 \ EXP be decided in time O(2q(n)) using a

ΣP
k -oracle A.

Enum-D0(L, q)

Instance: x ∈ Σ∗

Output: all {0, 1}-words of length q(|x|), and 2 if x ∈ L

◮ Enum-D0(L, q) ∈ Del+ΣP
k .

◮ Enum-D0(L, q) ∕∈ DelΣP
ℓ .

Note: Generalizes Del P ⊊ Inc P.
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Self-Reducibility

Clearly, if Enum-R ∈ DelΣP
k then Exist-R ∈ ∆P

k .

ExtSol-R
Instance: (x, y) ∈ Σ∗ × Σ∗

Output: Is there y ′ ∈ Σ∗ such that (x, yy ′) ∈ R?

Note: Enum-R ∈ DelayPExtSol-R.

Definition: R is self-reducible if ExtSol-R ≤T Exist-R.

Theorem: Let R be self-reducible. Then
Exist-R ∈ ∆P

k if and only if Enum-R ∈ DelΣP
k .



15

Self-Reducibility

AnotherSol-R
Instance: x ∈ Σ∗, Y ⊆ R(x)

Output: y ∈ R(x)\Y or declare that no such y exists.

Definition: R is enumeration self-reducible if
AnotherSol-R ≤T Exist-AnotherSol-R.

[Kimelfeld, Kolaitis, 2014]

Theorem:
◮ AnotherSol-R can be solved in polynomial time with

access to a ∆P
k -oracle if and only if Enum-R ∈ IncΣP

k .
[cf. Capelli, Strozecki, 2018]

◮ Let R be enumeration self-reducible. Then
Exist-AnotherSol-R ∈ ∆P

k iff Enum-R ∈ IncΣP
k .

[cf. Kimelfeld, Kolaitis, 2014]
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What Next?

◮ We have (likely strict) hierarchies of (hard) enumeration
classes.

◮ We have methods to prove membership in these classes.
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What Next?

◮ We have (likely strict) hierarchies of (hard) enumeration
classes.

◮ We have methods to prove membership in these classes.

Any complete enumeration problems?
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Reduction among Enumeration Problems

What do we want from a reduction?

◮ If Enum-R1 ≤ Enum-R2 and if we can enumerate Enum-R2,
then we can enumerate Enum-R1.

◮ Relevant classes are closed under reduction.
◮ Reduction is transitive.
◮ Allows for (natural?) complete problems.
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Enumeration Oracle Machines

Enumeration algorithm (RAM) with Enum-R oracle,
i.e., enumeration oracle, not only language (yes-no) oracle

◮ oracle query built as concatenation of contents of a
(possibly unbounded) sequence of special registers

◮ oracle call NOO (“next oracle output”): produces next
element from SolR(x) or information that there is none,
where x is oracle query

◮ oracle bounded: size of oracle query at most polynomial in
size of input
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Turing Style Reductions

Definition (Reductions ≤D, ≤I)
Enum-R1 ≤x Enum-R2 (for x ∈ {D, I}) if there is a RAM A with
oracle Enum-R2 such that, independent of the order in which
the Enum-R2 oracle enumerates its answers,

◮ A enumerates Enum-R1 in DelayP and is oracle-bounded,
for x = D.

◮ A enumerates Enum-R1 in IncP, for x = I.
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Properties of ≤D and ≤I

◮ ≤D and ≤I are transitive,

◮ classes DelC are closed under ≤D,

◮ classes IncC are closed under ≤I

(for every class C in PH).
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Completeness Theorem

Let R ⊆ Σ∗ × Σ∗ and k ≥ 1 such that Exist-R is ΣP
k -complete.

Then Enum-R is

◮ DelΣP
k -hard under ≤D reductions,

◮ IncΣP
k -hard under ≤I reductions.
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Completeness Theorem

Let R ⊆ Σ∗ × Σ∗ and k ≥ 1 such that Exist-R is ΣP
k -complete.

Then Enum-R is

◮ DelΣP
k -hard under ≤D reductions,

◮ IncΣP
k -hard under ≤I reductions.

If additionally R is self-reducible, then Enum-R is
◮ DelΣP

k -complete under ≤D reductions,

◮ IncΣP
k -complete under ≤I reductions.
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Complete Problems

··· E-ΣkSAT is complete for DelΣP
k under ≤D reductions.

··· E-ΣkSAT is complete for IncΣP
k under ≤I reductions.

In particular: Enum-SAT is complete for Del NP.
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Complete Problems

··· E-ΣkSAT is complete for DelΣP
k under ≤D reductions.

··· E-ΣkSAT is complete for IncΣP
k under ≤I reductions.

In particular: Enum-SAT is complete for Del NP.

··· E-Πk−1SAT is complete for DelΣP
k under ≤D reductions.

··· E-Πk−1SAT is complete for IncΣP
k under ≤I reductions.
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Boolean Constraint Satisfaction Problems

◮ Clear: If Γ ∈ {Horn,dualHorn,bijunctive, affine}, then
Enum-SAT(Γ) ∈ DelayP.

◮ Otherwise:
◮ Observe that not necessarily, SAT(Γ) is NP-hard

(namely if Γ is 1-valid or 0-valid)!
◮ But we can show: AnotherSol_SAT(Γ) is NP-complete.

··· Enum-SAT(Γ) is Del NP-complete under ≤D.
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Further Results

problem member ≤D-hardness ≤I-hardness

E-ΣkSAT DelΣP
k DelΣP

k IncΣP
k

E-ΠkSAT DelΣP
k+1 DelΣP

k+1 IncΣP
k+1

E-Circumscription Del+NP Del NP Inc NP

E-CardMinSAT Del NP Del NP Inc NP

E-ModBasedDiagnosis Del NP Del NP Inc NP

E-Abduction DelΣP
2 DelΣP

2 IncΣP
2

E-Repair DelΣP
2 IncΣP

2
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Example: Minimal Satisfiability

E-CardMinSAT
Instance: φ a Boolean formula
Output: All cardinality-minimal satisfying assignments of φ.

Theorem: E-CardMinSAT is Del NP-complete under ≤D.
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Hardness follows from Completeness Theorem.
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Example: Minimal Satisfiability

E-CardMinSAT
Instance: φ a Boolean formula
Output: All cardinality-minimal satisfying assignments of φ.

Theorem: E-CardMinSAT is Del NP-complete under ≤D.

Hardness follows from Completeness Theorem.

Membership:
◮ Compute first the minimal cardinality of models in ptime

with NP-oracle.
◮ Enumerate all cardinality-minimal models by the standard

binary search tree with an NP-oracle.
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Example: Abduction

E-Abduction
Instance: Γ a set of formulæ (knowledge),

H a set of literals (hypotheses),
q a variable, q ∕∈ H (manifestation)

Output: all sets E ⊆ H such that Γ ∧ E is satisfiable and
Γ ∧ E |= q (explantion).

Theorem: E-Abduction is DelΣP
2 -complete under ≤D.
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Example: Abduction

E-Abduction
Instance: Γ a set of formulæ (knowledge),

H a set of literals (hypotheses),
q a variable, q ∕∈ H (manifestation)

Output: all sets E ⊆ H such that Γ ∧ E is satisfiable and
Γ ∧ E |= q (explantion).

Theorem: E-Abduction is DelΣP
2 -complete under ≤D.

Hardness follows from Completeness Theorem, since the
decision problem is ΣP

2 -complete [Creignou, Zanuttini, 2006].

Membership: Given (Γ, H, q) and E ⊆ H, E can be extended to
an explanation iff (Γ ∧ E,H, q) ∈ Abduction.
··· E-Abduction is self-reducible
··· E-Abduction ∈ DelΣP

2 .



II. Within DelayP

Joint work with Nadia Creignou and Arnaud Durand

MFCS 2022
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Circuit Enumeration – Simplistic View

◮ Starting point: a family of circuits (Cn) of a given kind.
◮ x is the input.
◮ Successive outputs serve as auxiliary input.

Circuit  

output
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Circuit Enumeration with Precomputation and
Memory

Circuit  

Precomputation

Circuit 

output 
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Formal Definitions

Let T be a complexity class and K a class of circuits.

Definition (K-delay with T -precomputation)
For a predicate R, Enum-R ∈ DelT ·K if there exists an
algorithm M working with resource T and a family of K-circuits
C = (Cn)n∈N such that, for all input x there is an enumeration
y1, ..., yk of SolR(x) and:

◮ M compute some value x∗, i.e., M(x) = x∗,
◮ C|·|(x

∗) = y1 ∈ SolR(x),
◮ for all i < k: C|·|(x

∗, yi) = yi+1 ∈ SolR(x),
◮ C|·|(x

∗, yk) = yk.
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Formal Definitions

Definition (K-delay with T -precomputation and memory)
Enum-R ∈ Del∗T ·K if there exists an algorithm M working with
resource T and two families of K-circuits C = (Cn)n∈N,
D = (Dn)n∈N such that, for all input x there is an enumeration
y1, ..., yk of SolR(x) and:

◮ M computes some value x∗, i.e., M(x) = x∗,
◮ C|·|(x

∗) = y∗
1 and D|·|(y

∗
1) = y1 ∈ SolR(x),

◮ ∀i < k: C|·|(x
∗, y∗

i ) = y∗
i+1 and D|·|(y

∗
i+1) = yi+1 ∈ SolR(x),

◮ C|·|(x
∗, y∗

k) = y∗
k.

DelcT ·K (resp. DelpT ·K): constant (resp. polynomial) size
memory.
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Classes under Study

Main circuit engines: AC0 circuits/languages,
i.e., uniform families of Boolean circuits of polynomial size and
constant depth with gates of unbounded fan-in.

◮ Del·AC0: no precomputation, no memory
◮ Delc ·AC0: no precomputation, constant size memory
◮ Delp ·AC0: no precomputation, polynomial size memory
◮ Del∗ ·AC0: no precomputation, unbounded memory

◮ DelP ·AC0: polytime precomputation, no memory
◮ DelcP ·AC0: polytime precomputation, constant size memory
◮ DelpP ·AC0: polytime precomputation, polysize memory
◮ Del∗P ·AC0: polytime precomputation, unbounded memory
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A Hierarchy of Circuit Classes

Del·AC0

Delc ·AC0

Delp ·AC0

Del∗ ·AC0

DelP ·AC0

DelcP ·AC0

DelpP ·AC0

Del∗P ·AC0

DelayP

IncP

if P ∕= NP

if NP ∕= PSPACE

if P ∕= NP
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Comparisons with Constant Delay

◮ CD◦lin: problems that can be enumerated on RAMs with
constant delay after linear time preprocessing

◮ Classes Del·AC0 and CD◦lin are incomparable
◮ Output the parity of the number of 1 is in CD◦lin (and not

in Del·AC0)
◮ Enumerate the 1 entries of A× B with A, B Boolean

matrices is in Del·AC0

(but, assuming the BMM hypothesis, not in CD◦lin)

◮ CD◦lin ⊊ Delplin ·AC0.
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The Unreasonable Effectiveness of Unbounded Memory
Theorem: Let R be a polynomially balanced relation such that
Enum-R ∈ IncP and R is AC0-checkable.
Then Enum-R ∈ Del∗P ·AC0.
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Enum-R ∈ IncP and R is AC0-checkable.
Then Enum-R ∈ Del∗P ·AC0.

Proof idea for Enum-Krom-SAT ∈ Del∗P ·AC0:

◮ Use preprocessing to compute a polynomial number of
solutions.

◮ While outputting these, use unbounded memory to build
tree of all assignments.

◮ Mark satisfying assignments.
◮ Output these one after the other.
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The Unreasonable Effectiveness of Unbounded Memory
Theorem: Let R be a polynomially balanced relation such that
Enum-R ∈ IncP and R is AC0-checkable.
Then Enum-R ∈ Del∗P ·AC0.

Proof idea for Enum-Krom-SAT ∈ Del∗P ·AC0:

◮ Use preprocessing to compute a polynomial number of
solutions.

◮ While outputting these, use unbounded memory to build
tree of all assignments.

◮ Mark satisfying assignments.
◮ Output these one after the other.

With a similar proof: If P ∕= NP, then
◮ DelpP ·AC0 ⊊ Del∗P ·AC0.
◮ Delp ·AC0 ⊊ Del∗ ·AC0.
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Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

Note: same as transversals for hypergraph.
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◮ Enum-Monotone-SAT ∈ Del·AC0.
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Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

◮ Enum-IHS-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-Krom-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

Lower bound by reduction from st-connectivity.
Upper bound: Precomputate reachability and topological
order in implication graph; then use refinement of
algorithm by [Aspvall, Plass, Tarjan, 1979]. No memory is
ever needed.
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Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

◮ Enum-IHS-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-Krom-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-XOR-SAT ∈ DelcP ·AC0 \ Del∗ ·AC0.

Upper bound: Gaussian elimination + Gray code
enumeration.
Lower bound: Parity can be expressed.
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Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

◮ Enum-IHS-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-Krom-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-XOR-SAT ∈ DelcP ·AC0 \ Del∗ ·AC0.

◮ Enum-Horn-SAT ∈ Del∗P ·AC0 \ Del∗ ·AC0.

Build tree of all possible assignment in memory.
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Enumerating Satisfying Assignments Using Circuits

◮ Enum-Monotone-SAT ∈ Del·AC0.

◮ Enum-IHS-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-Krom-SAT ∈ DelP ·AC0 \ Del∗ ·AC0.

◮ Enum-XOR-SAT ∈ DelcP ·AC0 \ Del∗ ·AC0.

◮ Enum-Horn-SAT ∈ Del∗P ·AC0 \ Del∗ ·AC0.
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Complexity of Enumerating SAT

Del·AC0 Enum-Monotone-SAT

Delc ·AC0

Delp ·AC0

Del∗ ·AC0

DelP ·AC0 Enum-Krom-SAT
Enum-IHS-SAT

DelcP ·AC0 Enum-XOR-SAT

DelpP ·AC0

Del∗P ·AC0 Enum-Horn-SAT

DelayP

IncP

if P ∕= NP

if NP ∕= PSPACE

if P ∕= NP
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Main Open Question

◮ It is known that Enum-Horn-SAT ∈ DelayP ∩ Del∗P ·AC0,
and it seems to be harder than Enum-Krom-SAT.
Open: Where is Enum-Horn-SAT in this hierarchy of
circuit classes?

◮ Completeness results? Reductions?
Many classes here are promise classes and not known to
possess complete problems.
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Main Open Question

◮ It is known that Enum-Horn-SAT ∈ DelayP ∩ Del∗P ·AC0,
and it seems to be harder than Enum-Krom-SAT.
Open: Where is Enum-Horn-SAT in this hierarchy of
circuit classes?

◮ Completeness results? Reductions?
Many classes here are promise classes and not known to
possess complete problems.

Thank you!
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